Geometric structures on the orbits of loop diffeomorphism groups and related “heavenly-type” hamiltonian systems. II

  • O. E. Hentosh Pidstryhach Institute for Applied Problems of Mechanics and Mathematics at the NAS, Lviv
  • Ya. A. Prykarpatskyy
  • A. A. Balinsky Mathematics Institute at the Cardi University, Cardi CF24 4AG, Great Btitain
  • A. K. Prykarpatski Department of Physics, Mathematics and Computer Science at the Cracov University of Technology, Krakow, 31155, Poland

Abstract

UDC 517.9

A review of differential-geometric and Lie-algebraic approaches to the study of a broad class of nonlinear integrable   differential systems of ``heavenly'' type associated with Hamiltonian flows on the spaces conjugated to the loop Lie algebras of vector fields on the tori.  These flows are generated by the corresponding orbits of the coadjoint action of the diffeomorphism loop group and satisfy the Lax–Sato-type vector-field compatibility conditions.  The corresponding hierarchies of conservation laws and their relationships with Casimir invariants are analyzed.  Typical examples of these systems are considered and their complete integrability is established by using the developed Lie-algebraic construction.  We describe new generalizations of the integrable dispersion-free systems of ``heavenly'' type for which the corresponding generating elements of orbits have a factorized structure, which allows their extension to the multidimensional case.

References

V. Ovsienko, C. Roger, Looped cotangent Virasoro algebra and non-linear integrable systems in dimension $2+1$, Commun. Math. Phys., 273, № 2, 357 – 378 (2007). DOI: https://doi.org/10.1007/s00220-007-0237-z

V. Ovsienko, Bi-Hamiltonian nature of the equation $u_{tx}=u_{xy}u_{y}-u_{yy}u_{x}$, Adv. Pure and Appl. Math., 1, № 1, 7 – 10 (2008); arXiv:0802.1818v1 (2008). DOI: https://doi.org/10.1515/apam.2010.002

A. Sergyeyev, B. M. Szablikowski, Central extensions of cotangent universal hierarchy: $(2+1)$-dimensional bi-Hamiltonian systems, Phys. Lett. A, 372, № 47, 7016 – 7023 (2008). DOI: https://doi.org/10.1016/j.physleta.2008.10.020

A. K. Prykarpatski, O. Ye. Hentosh, Ya. A. Prykarpatsky, The differential-geometric and algebraic aspects of the Lax – Sato theory, Mathematics, 5, № 4, MDPI, Basel, Switzerland (2017).

O. Ye. Hentosh, Ya. A. Prykarpatsky, D. Blackmore, A. K. Prykarpatski, Dispersionless completely integrable heavenly type Hamiltonian flows and their differential-geometric structure, Symmetry, Integrability and Geometry: Methods and Appl., 15, Article 079 (2019); https://doi.org/10.3842/SIGMA.2019.079. DOI: https://doi.org/10.17352/amp.000006

O. Ye. Hentosh, Ya. A. Prykarpatsky, D. Blackmore, A. K. Prykarpatski, Lie-algebraic structure of Lax – Sato integrable heavenly equations and the Lagrange – d’Alembert principle, J. Geom. and Phys., 120, 208 – 227 (2017); https://doi.org/10.1016/j.geomphys.2017.06.003. DOI: https://doi.org/10.1016/j.geomphys.2017.06.003

S. V. Manakov, P. M. Santini, Inverse scattering problem for vector fields and the Cauchy problem for the heavenly equation, Phys. Lett. A, 359, № 6, 613 – 619 (2006). DOI: https://doi.org/10.1016/j.physleta.2006.07.011

K. Takasaki, T. Takebe, $SDiff(2)$ Toda equation – hierarchy, tau function and symmetries, Lett. Math. Phys., 23, № 3, 205 – 214 (1991). DOI: https://doi.org/10.1007/BF01885498

K. Takasaki, T. Takebe, Integrable hierarchies and dispersionless limit, Rev. Math. Phys., 7, № 5, 743 – 808 (1995). DOI: https://doi.org/10.1142/S0129055X9500030X

Л. А. Тахтаджян, Л. Д. Фаддеев, Гамильтонов подход к теории солитонов, Наука, Москва (1986).

D. Blackmore, A. K. Prykarpatsky, V. Hr. Samoylenko, Nonlinear dynamical systems of mathematical physics: spectral and symplectic integrability analysis, World Sci., Hackensack (2011). DOI: https://doi.org/10.1142/7960

М. А. Семенов-Тян-Шанский, Что такое классическая $r$-матрица?, Функц. анализ и его прил., 17, № 4, 17 – 33 (1983).

R. Abraham, J. Marsden, Foundations of mechanics, 2nd ed., Addison-Wesley Publ. Co., Inc., Redwood City, CA (1978).

C. Godbillon, Geometrie differentielle et mecanique analytique, Hermann, Paris (1969).

M. Blaszak, Multi-Hamiltonian theory of dynamical systems, Springer-Verlag, Berlin, Heidelberg (1998). DOI: https://doi.org/10.1007/978-3-642-58893-8

Л. В. Богданов, Интерполирующие дифференциальные редукции многомерных интегрируемых иерархий, Теор. и мат. физика, 167, № 3, 705 – 713 (2011). DOI: https://doi.org/10.4213/tmf6646

L. V. Bogdanov, B. G. Konopelchenko, On the heavenly equation and its reductions, J. Phys. A: Math. and Gen., 39, 11793 – 11802 (2006). DOI: https://doi.org/10.1088/0305-4470/39/38/006

L. V. Bogdanov, M. V. Pavlov, Linearly degenerate hierarchies of quasiclassical SDYM type, J. Math. Phys., 58, № 9, Article 093505 (2017). DOI: https://doi.org/10.1063/1.5004258

B. Doubrov, E. V. Ferapontov, On the integrability of symplectic Monge – Amp`{e}re equations, J. Geom. and Phys., 60, 1604 – 1616 (2010); arXiv:0910.3407v2 [math.DG] 13 Apr 2010. DOI: https://doi.org/10.1016/j.geomphys.2010.05.009

E. V. Ferapontov, J. Moss, Linearly degenerate PDEs and quadratic line complexes}; arXiv:1204.2777v1 [math.DG] 12 Apr 2012.

Л. Мартинес Алонсо, А. Б. Шабат, Гидродинамические редукции и решения универсальной иерархии, Теор. и мат. физика, 140, № 2, 216 – 229 (2004). DOI: https://doi.org/10.4213/tmf91

Published
08.11.2022
How to Cite
Hentosh, O. E., Y. A. Prykarpatskyy, A. A. Balinsky, and A. K. Prykarpatski. “Geometric Structures on the Orbits of Loop Diffeomorphism Groups and Related ‘heavenly-type’ Hamiltonian Systems. II”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 9, Nov. 2022, pp. 1182 -00, doi:10.37863/umzh.v74i9.7234.
Section
Research articles