Cohomology and formal deformations of $n$-Hom–Lie color algebras
Abstract
UDC 512.5
The aim of this paper is to provide a cohomology of $n$-Hom–Lie color algebras, in particular, a cohomology governing one-parameter formal deformations. Then we also study formal deformations of the $n$-Hom–Lie color algebras and introduce the notion of Nijenhuis operator on a $n$-Hom–Lie color algebra, which may give rise to infinitesimally trivial $(n-1)$-order deformations. Furthermore, in connection with Nijenhuis operators, we introduce and discuss the notion of product structure on $n$-Hom–Lie color algebras.
References
E. Abdaoui, S. Mabrouk, A. Makhlouf, Cohomology of Hom–Leibniz and $n$-ary Hom–Nambu–Lie superalgebras}; arXiv: 1406.3776 (2014).
F. Ammar, I. Ayadi, S. Mabrouk, A. Makhlouf, Quadratic color Hom–Lie algebras, Moroccan Andalusian Meeting on Algebras and their Applications, Springer, Cham (2018), p. 287–312. DOI: https://doi.org/10.1007/978-3-030-35256-1_16
F. Ammar, S. Mabrouk, A. Makhlouf, Representations and cohomology of $n$-ary multiplicative Hom–Nambu–Lie algebras, J. Geom. and Phys., 61, № 10, 1898–1913 (2011). DOI: https://doi.org/10.1016/j.geomphys.2011.04.022
F. Ammar, N. Saadaoui, Cohomology of $n$-ary-Nambu–Lie superalgebras and super $omega_infty$ 3-algebra}; arXiv:1304.5767 (2013).
J. Arnlind, A. Makhlouf, S. Silvestrov, Ternary Hom–Nambu–Lie algebras induced by Hom–Lie algebras, J. Math. Phys., 51, № 4, Article 043515 (2010). DOI: https://doi.org/10.1063/1.3359004
J. Arnlind, A. Makhlouf, S. Silvestrov, Construction of $n$-Lie algebras and $n$-ary Hom–Nambu–Lie algebras}, J. Math. Phys., 52, № 12, Article 123502 (2011). DOI: https://doi.org/10.1063/1.3653197
J. Arnlind, A. Kitouni, A. Makhlouf, S. Silvestrov, Structure and cohomology of $3$-Lie algebras induced by Lie algebras, Algebra, Geometry and Mathematical Physics, Springer Proc. Math. and Stat., 85, (2014). DOI: https://doi.org/10.1007/978-3-642-55361-5_9
A. Armakan, S. Silvestrov, M. Farhangdoost, Enveloping algebras of color Hom–Lie algebras, Turkish J. Math., 43, 316–339 (2019). DOI: https://doi.org/10.3906/mat-1808-96
H. Ataguema, A. Makhlouf, S. Silvestrov, Generalization of $n$-ary Nambu algebras and beyond, J. Math. Phys., 50, № 8, Article 083501 (2009). DOI: https://doi.org/10.1063/1.3167801
I. Bakayoko, S. Silvestrov, Multiplicative $n$-Hom–Lie color algebras, International Conference on Stochastic Processes and Algebraic Structures, 22, 159–187 (2017). DOI: https://doi.org/10.1007/978-3-030-41850-2_7
P. D. Beites, I. Kaygorodov, Y. Popov, Generalized derivations of multiplicative $n$-ary Hom-w color algebras, Bull. Malays. Math. Sci. Soc., 42, 315–335 (2019). DOI: https://doi.org/10.1007/s40840-017-0486-8
J. Bergen, D. S. Passman, Delta ideal of Lie color algebras, J. Algebra, 177, 740–754 (1995). DOI: https://doi.org/10.1006/jabr.1995.1327
J. M. Casas, J.-L. Loday, T. Pirashvili, Leibniz $n$-algebras, Forum Math., 14, 189–207 (2002). DOI: https://doi.org/10.1515/form.2002.009
Y. L. Daletskii, L. A. Takhtajan, Leibniz and Lie algebra structures for Nambu algebra, Lett. Math. Phys., 39, 127–141 (1997). DOI: https://doi.org/10.1023/A:1007316732705
V. T. Filippov, $n$-Lie algebras, Sib. Math. J., 26, 879–891 (1985) (Transl. from Russian: Sib. Mat. Zh., 26, 126–140 (1985)). DOI: https://doi.org/10.1007/BF00969110
J. Feldvoss, Representations of Lie color algebras, Adv. Math., 157, 95–137 (2001). DOI: https://doi.org/10.1006/aima.2000.1942
P. Gautheron, Some remarks concerning Nambu mechanics, Lett. Math. Phys., 37, 103–116 (1996). DOI: https://doi.org/10.1007/BF00400143
Sh. M. Kasymov, Theory of $n$-Lie algebras, Algebra and Logic, 26, 155–166 (1987) (Transl. from Russian: Algebra i Logika, 26, № 3, 277–297 (1987)). DOI: https://doi.org/10.1007/BF02009328
I. Kaygorodov, Y. Popov, Generalized derivations of (color) $n$-ary algebras, Linear and Multilinear Algebra, 64, 1086–1106 (2016). DOI: https://doi.org/10.1080/03081087.2015.1072492
J. Liu, Y. Sheng, Y. Zhou, C. Bai, Nijenhuis operators on $n$-Lie algebras, Commun. Theor. Phys., 65, № 6, 659–670 (2016). DOI: https://doi.org/10.1088/0253-6102/65/6/659
S. Montgomery, Constructing simple Lie superalgebras from associative graded algebras, J. Algebra, 195, 558–579 (1997). DOI: https://doi.org/10.1006/jabr.1997.7050
R. Ree, Generalized Lie elements, Can. J. Math., 12, 493–502 (1960). DOI: https://doi.org/10.4153/CJM-1960-044-x
M. Rotkiewicz, Cohomology ring of $n$-Lie algebras, Extracta Math., 20, 219–232 (2005).
Y. Sheng, R. Tang, Symplectic, product and complex structures on 3-Lie algebras, J. Algebra, 508, 256–300 (2018). DOI: https://doi.org/10.1016/j.jalgebra.2018.05.005
M. Scheunert, Generalized Lie algebras, J. Math. Phys., 20, № 4, 712–720 (1979). DOI: https://doi.org/10.1063/1.524113
Y. Su, K. Zhao, L. Zhu, Classification of derivation-simple color algebras related to locally finite derivations, J. Math. Phys., 45, 525–536 (2004). DOI: https://doi.org/10.1063/1.1628837
Y. Su, K. Zhao, L. Zhu, Simple color algebras of Weyl type, Israel J. Math., 137, 109–123 (2003). DOI: https://doi.org/10.1007/BF02785957
L. A. Takhtajan, On foundation of the generalized Nambu mechanics, Commun. Math. Phys., 160, № 2, 295–315 (1994). DOI: https://doi.org/10.1007/BF02103278
L. A. Takhtajan, Higher order analog of Chevalley-Eilenberg complex and deformation theory of $n$-algebras, St.,Petersburg Math. J., 6, № 2, 429–438 (1995).
T. Zhang, Cohomology and deformations of 3-Lie colour algebras, Linear and Multilinear Algebra, 63, № 4, 651–671 (2015). DOI: https://doi.org/10.1080/03081087.2014.891589
M. C. Wilson, Delta methods in enveloping algebras of Lie color algebras, J. Algebra, 75, 661–696 (1995). DOI: https://doi.org/10.1006/jabr.1995.1207
Copyright (c) 2023 Abdenacer Makhlouf
This work is licensed under a Creative Commons Attribution 4.0 International License.