Primes of the form $[{n}^c]$ with square-free $n$

  • S. I. Dimitrov Faculty of Applied Mathematics and Informatics, Technical University of Sofia, Bulgaria
Keywords: Prime numbers $\cdot$ Square-free numbers $\cdot$ Exponential sums

Abstract

UDC 621

Let $[\, \cdot\,]$ be the floor function. We show that if $1<c<\dfrac{3849}{3334},$ then there exist infinitely many prime numbers of the form $[n^c],$ where $n$ is square-free.

References

R. C. Baker, The square-free divisor problem, Quart. J. Math. Oxford, 45, 269–277 (1994). DOI: https://doi.org/10.1093/qmath/45.3.269

R. C. Baker, G. Harman, J. Rivat, Primes of the form $[n^c]$, J. Number Theory, 50, 261–277 (1995). DOI: https://doi.org/10.1006/jnth.1995.1020

R. C. Baker, W. Banks, V. Guo, A. Yeager, Piatetski-Shapiro primes from almost primes, Monatsh. Math., 174, 357–370 (2014). DOI: https://doi.org/10.1007/s00605-013-0552-8

W. D. Banks, V. Guo, I. Shparlinski, Almost primes of the form $[p^c]$, Indag. Math., 27, 423–436 (2016). DOI: https://doi.org/10.1016/j.indag.2015.10.002

S. W. Graham, G. Kolesnik, Van der Corput's method of exponential sums, Cambridge Univ. Press, New York (1991). DOI: https://doi.org/10.1017/CBO9780511661976

D. R. Heath-Brown, Prime numbers in short intervals and a generalized Vaughan identity, Canad. J. Math., 34, 1365–1377 (1982). DOI: https://doi.org/10.4153/CJM-1982-095-9

D. R. Heath-Brown, The Piatetski-Shapiro prime number theorem, J. Number Theory, 16, 242–266 (1983). DOI: https://doi.org/10.1016/0022-314X(83)90044-6

C. H. Jia, On Piatetski-Shapiro prime number theorem II, Sci. China Ser. A, 36, 913–926 (1993).

C. H. Jia, On Piatetski-Shapiro prime number theorem, Chinese Ann. Math., 15, 9–22 (1994).

G. A. Kolesnik, The distribution of primes in sequnces of the form $[n^c]$, Mat. Zametki, 2, 117–128 (1967).

G. A. Kolesnik, Primes of the form $[n^c]$, Pacific J. Math., 118, 437–447 (1985). DOI: https://doi.org/10.2140/pjm.1985.118.437

A. Kumchev, On the distribution of prime numbers of the form $[n^c]$, Glasg. Math. J., 41, 85–102 (1999). DOI: https://doi.org/10.1017/S0017089599970477

D. Leitmann, Abschatzung trigonometrischer Summen, J. reine und angew. Math., 317, 209 –219 (1980). DOI: https://doi.org/10.1515/crll.1980.317.209

H. Q. Liu, J. Rivat, On the Piatetski-Shapiro prime number theorem, Bull. London Math. Soc., 24, 143–147 (1992). DOI: https://doi.org/10.1112/blms/24.2.143

I. I. Piatetski-Shapiro, On the distribution of prime numbers in sequences of the form $[f(n)]$, Mat. Sb., 33, 559–566 (1953).

J. Rivat, Autour d'un theorem de Piatetski-Shapiro, Thesis, Université de Paris Sud (1992).

J. Rivat, P. Sargos, Nombres premiers de la forme $[n^c]$, Canad. J. Math., 53, 414–433 (2001). DOI: https://doi.org/10.4153/CJM-2001-017-0

J. Rivat, J. Wu, Prime numbers of the form $[n^c]$, Glasg. Math. J., 43, 237–254 (2001). DOI: https://doi.org/10.1017/S0017089501020080

O. Robert, P. Sargos, Three-dimensional exponential sums with monomials, J. reine und angew. Math., 591, 1–20 (2006). DOI: https://doi.org/10.1515/CRELLE.2006.012

J. D. Vaaler, Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc., 12, 183–216 (1985). DOI: https://doi.org/10.1090/S0273-0979-1985-15349-2

Published
28.02.2024
How to Cite
DimitrovS. I. “Primes of the Form $[{n}^c]$ With Square-Free $n$”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 2, Feb. 2024, pp. 224-33, doi:10.3842/umzh.v76i2.7258.
Section
Research articles