On the nonstandard maximum principle and its application for construction of monotone finite-difference schemes for multidimensional quasilinear parabolic equations

  • Le Minh Hieu Department of Economics, University of Economics – The University of Danang, Vietnam
  • Nguyen Huu Nguyen Xuan Department of Research and International Cooperation, University of Economics – The University of Danang, Vietnam
  • Dang Ngoc Hoang Thanh Department of Information Technology, School of Business Information Technology, University of Economics, Ho Chi Minh city, Vietnam
Keywords: Maximum principle, two-side estimates, monotone method, finite-difference scheme, multidimensional quasilinear parabolic equation, convergence, weakly couple system, scientific computing, regularization principle, convection-diffusion problem, third boundary value problem.

Abstract

UDC 517.9

We consider the difference maximum principle with input data of variable sign and its application to the investigation of the monotonicity and convergence of finite-difference schemes (FDSs). Namely, we consider the Dirichlet initial-boundary value problem for multidimensional quasilinear parabolic equation with an unbounded nonlinearity. Unconditionally monotone linearized finite-difference schemes of the second-order of accuracy are constructed on uniform grids. A two-sided estimate for the grid solution, which is completely consistent with similar estimates for the exact solution, is obtained. These estimates are used to prove the convergence of FDSs in the grid $L_2$-norm. We also present a study aimed at constructing second-order monotone difference schemes for the parabolic convection-diffusion equation with boundary conditions of the third kind and unlimited nonlinearity without using the initial differential equation on the domain boundaries. The goal is a combination of the assumption of existence and uniqueness of a smooth solution and the regularization principle. In this case, the boundary conditions  are directly approximated on a two-point stencil of the second order.

References

V. B. Andreev, About convergence of difference schemes with splitting operator approximating the third boundary-value problem (in Russian), Zh. Vychisl. Mat. Mat. Fiz., 9, № 2, 337–349 (1969). DOI: https://doi.org/10.1016/0041-5553(69)90096-2

I. Farago, R. Horvath, Discrete maximum principle and adequate discretizations of linear parabolic problems, SIAM J. Sci. Comput., 28, 2313–2336 (2006). DOI: https://doi.org/10.1137/050627241

I. Farago, R. Horvath, S. Korotov, Discrete maximum principles for fe solutions of nonstationary diffusion-reaction problems with mixed boundary conditions, Numer. Methods Partial Differential Equations, 27, № 3, 702–720 (2011). DOI: https://doi.org/10.1002/num.20547

I. Farago, J. Karatson, S. Korotov, Discrete maximum principles for nonlinear parabolic pde systems, IMA J. Numer. Anal., 32, № 4, 1541–1573 (2012). DOI: https://doi.org/10.1093/imanum/drr050

A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs (1964).

I. V. Frjazinov, About difference approximation of boundary conditions for the third boundary value problem} (in Russian), Zh. Vychisl. Mat. Mat. Fiz., 4, № 4, 1106–1112 (1964). DOI: https://doi.org/10.1016/0041-5553(64)90090-4

F. J. Gaspar, F. J. Lisbona, P. P. Matus, V. T. K. Tuyen, Monotone finite difference schemes for quasilinear parabolic problems with mixed boundary conditions, Comput. Methods Appl. Math., 16, № 2, 231–243 (2016). DOI: https://doi.org/10.1515/cmam-2016-0002

F. J. Gaspar, F. J. Lisbona, P. P. Matus, V. T. K. Tuyen, Numerical methods for a one- dimensional non-linear biot’s model, J. Comput. and Appl. Math., 293, 62–72 (2016). DOI: https://doi.org/10.1016/j.cam.2015.03.039

S. Godunov, V. Ryabenkii, Difference schemes} (in Russian), Nauka, Moscow (1977).

L. M. Hieu, T. T. H. Hanh, D. N. H. Thanh, A finite-difference scheme for initial boundary value problem of the gamma equation in the pricing of financial derivatives, J. Math. Comput. Sci., 20, № 4, 283–291 (2020). DOI: https://doi.org/10.22436/jmcs.020.04.02

L. M. Hieu, T. T. H. Hanh, D. N. H. Thanh, Monotone finite-difference schemes with second order approximation based on regularization approach for the Dirichlet boundary problem of the gamma equation, IEEE Access, 8, 45119–45132 (2020); DOI: 10.1109/ACCESS.2020.2978594. DOI: https://doi.org/10.1109/ACCESS.2020.2978594

M. N. Koleva, L. G. Vulkov, A second-order positivity preserving numerical method for gamma equation, Appl. Math. and Comput., 220, 722–734 (2013). DOI: https://doi.org/10.1016/j.amc.2013.06.082

O. A. Ladyzhenskaya, Solution of the first boundary value problem in the whole for quasilinear parabolic equations, Tr. Mosk. Mat. Obsheh., 7, 149–177 (1958).

O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural’tseva, Linear and quasilinear equations of parabolic type} (in Russian), Nauka, Moscow (1967).

P. P. Matus, Monotone schemes of a higher order of accuracy for differential problems with boundary conditions of the second and third kind, Comput. Methods Appl. Math., 2, № 4, 378–391 (2002). DOI: https://doi.org/10.2478/cmam-2002-0021

P. P. Matus, D. Poliakov, D. Pylak, On convergence of diffrence schemes for Dirichlet ibvp for two-dimensional quasilinear parabolic equations, Int. J. Environment and Pollution, 66, № 1–3, 63–79 (2019). DOI: https://doi.org/10.1504/IJEP.2019.104515

P. P. Matus, The maximum principle and some of its applications, Comput. Methods Appl. Math., 2, № 1, 50–91 (2002). DOI: https://doi.org/10.2478/cmam-2002-0004

P. P. Matus, On convergence of difference schemes for ibvp for quasilinear parabolic equation with generalized solutions, Comput. Methods Appl. Math., 14, № 3, 361–371 (2014). DOI: https://doi.org/10.1515/cmam-2014-0008

P. P. Matus, F. Gaspar, L. M. Hieu, V. T. K. Tuyen, Monotone difference schemes for weakly coupled elliptic and parabolic systems, Comput. Methods Appl. Math., 17, № 2, 287–298 (2017). DOI: https://doi.org/10.1515/cmam-2016-0046

P. P. Matus, L. M. Hieu, Difference schemes on nonuniform grids for the two-dimensional convection-diffusion equation, Comput. Math. and Math. Phys., 57, 1994–2004 (2017). DOI: https://doi.org/10.1134/S0965542517120107

P. P. Matus, L. M. Hieu, D. Pylak, Monotone finite-difference schemes of second-order accuracy for quasilinear parabolic equations with mixed derivatives, Different. Equat., 55, № 3, 424–436 (2019). DOI: https://doi.org/10.1134/S0012266119030157

P. P. Matus, L. M. Hieu, D. Pylak, Difference schemes for quasilinear parabolic equations with mixed derivatives} (in Russian), Dokl. Nats. Acad. Sci. Belarusi, 63, № 3, 263–269 (2019). DOI: https://doi.org/10.29235/1561-8323-2019-63-3-263-269

P. P. Matus, L. M. Hieu, L. G. Vulkov, Maximum principle for finite-difference schemes with non sign-constant input data} (in Russian), Dokl. Nats. Acad. Sci. Belarusi, 59, № 5, 13–17 (2015).

P. P. Matus, L. M. Hieu, L. G. Vulkov, Analysis of second order difference schemes on non-uniform grids for quasilinear parabolic equations, J. Comput. and Appl. Math., 310, 186–199 (2017). DOI: https://doi.org/10.1016/j.cam.2016.04.006

P. P. Matus, S. Lemeshevsky, Stability and monotonicity of difference schemes for nonlinear scalar conservation laws and multidimensional quasi-linear parabolic equations, Comput. Methods Appl. Math., 9, № 3, 253–280 (2009). DOI: https://doi.org/10.2478/cmam-2009-0016

P. P. Matus, D. Poliakov, Consistent two-sided estimates for the solutions of quasilinear parabolic equations and their approximations, Different. Equat., 53, № 7, 964–973 (2017). DOI: https://doi.org/10.1134/S0012266117070126

P. P. Matus, D. Poliakov, L. M. Hieu, On the consistent two-side estimates for the solutions of quasilinear convection-diffusion equations and their approximations on non-uniform grids, J. Comput. and Appl. Math., 340, 571–581 (2018). DOI: https://doi.org/10.1016/j.cam.2017.09.020

P. P. Matus, D. Poliakov, L. M. Hieu, On convergence of difference schemes for Dirichlet ibvp for two-dimensional quasilinear parabolic equations with mixed derivatives and generalized solutions, Comput. Methods Appl. Math., 20, № 4, 695–707 (2020). DOI: https://doi.org/10.1515/cmam-2019-0052

P. P. Matus, I. V. Rybak, Monotone difference schemes for nonlinear parabolic equations, Different. Equat., 39, № 7, 1013–1022 (2003). DOI: https://doi.org/10.1023/B:DIEQ.0000009197.94879.5c

P. P Matus, I. V. Rybak, Difference schemes for elliptic equations with mixed derivatives, Comput. Methods Appl. Math., 4, № 4, 494–505 (2004). DOI: https://doi.org/10.2478/cmam-2004-0027

P. P. Matus, V. T. K. Tuyen, F. J. Gaspar, Monotone difference schemes for linear parabolic equation with mixed boundary conditions (in Russian), Dokl. Nats. Acad. Sci. Belarusi, 58, № 5, 18–22 (2014).

A. A. Samarskii, The theory of difference schemes, Marcel Dekker, New York (2001). DOI: https://doi.org/10.1201/9780203908518

A. A. Samarskii, A. V. Gulin, Stability of difference schemes, Nauka, Moscow (1973).

A. A. Samarskii, P. N. Vabishchevich, Numerical methods for solution of convection-diffusion problems (in Russian), Editorial YRSS, Moskow (1999).

V. S. Vladimirov, Equations of mathematical physics (in Russian), Nauka, Moscow (1964).

Published
02.02.2024
How to Cite
Hieu, L. M., N. H. N. Xuan, and D. N. H. Thanh. “On the Nonstandard Maximum Principle and Its Application for Construction of Monotone Finite-Difference Schemes for Multidimensional Quasilinear Parabolic Equations”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 1, Feb. 2024, pp. 132 -46, doi:10.3842/umzh.v76i1.7273.
Section
Research articles