Linear differential equation with inhomogeneity in the form of a formal power series over a ring with non-Archimedean valuation

  • S. L. Hefter V. N. Karazin Kharkiv Nationak University
  • A. B. Goncharuk V. N. Karazin Kharkiv Nationak University
Keywords: linear differential equations, non-Archimedean valuation, formal power series, fundamental solution, convolution

Abstract

UDC 517.922

Consider the linear nonhomogeneous differential equation of $m$-th order with constant coefficients from the valuation ring $K$ of a non-Archimedean field. We get sufficient conditions of uniqueness and existence for the solution from the ring of formal power series $K[[x]]$ of this equation. Also the fundamental solution of the equation is obtained and it is shown that the convolution of the fundamental solution and a non-homogeneity is a unique solution of the equation.

References

W. Balser, Formal power series and linear systems of meromorphic ordinary differential equations, Springer, New York (2000); DOI:10.1017/10.1007/b97608.

B. Brisson, Sur l'intégrazion des équations différentielles partielles, J. Éc. polytech. Math., 14, 191–261 (1808).

P. Buckingham, Factorial-type recurrence relations and $p$-adic incomplete gamma functions}; ArXiV (2022); DOI: 10.48550/arXiv.2206.12726.

P.-J. Cahen, J.-L. Chabert, Integer-valued polynomials, Math. Surveys and Monogr., vol. 48 (1997). DOI: https://doi.org/10.1090/surv/048

H. Cartan, Elementary theory of analytic functions of one or several complex variables, Dover Books on Math., Dover Publ. (2013).

B. Dwork, Lectures on $p$-adic differential equations, Grundlehren Math. Wiss., vol. 253, Springer, New York etc. (1982); DOI:10.1007/978-1-4613-8193-8. DOI: https://doi.org/10.1007/978-1-4613-8193-8

B. Dwork, G. Gerotto, F. J. Sullivan, An introduction to $G$-functions. (AM-133), vol. 133, Ann. Math. Stud., Princeton Univ. Press (2016); DOI: 10.1515/9781400882540. DOI: https://doi.org/10.1515/9781400882540

S. L. Gefter, Differential operators of infinite order in the space of formal laurent series and in the ring of power series with integer coefficients, J. Math. Sci., 239, No. 3, 282–291 (2019); DOI: 10.1007/s10958-019-04304-y. DOI: https://doi.org/10.1007/s10958-019-04304-y

S. L. Gefter, A. B. Goncharuk, Fundamental solution of an implicit linear inhomogeneous first order differential equation over an arbitrary ring, J. Math. Sci., 219, No. 6, 922–935 (2016); DOI: 10.1007/s10958-016-3155-9. DOI: https://doi.org/10.1007/s10958-016-3155-9

S. L. Gefter, A. B. Goncharuk, The Hurwitz product, $p$-adic topology on $mathbb{Z},$ and fundamental solution to linear differential equation in the ring $mathbb{Z}[[x]]$, J. Math. Sci., 228, No. 6, 633–638 (2018); DOI: 10.1007/s10958-017-3651-6. DOI: https://doi.org/10.1007/s10958-017-3651-6

S. L. Gefter, T. E. Stulova, Fundamental solution of the simplest implicit linear differential equation in a vector space, J. Math. Sci., 207, 166–175 (2015); DOI: 10.1007/s10958-015-2363-z. DOI: https://doi.org/10.1007/s10958-015-2363-z

H. Grauert, R. Remmert, Analytische Stellenalgebren, Grundlehren Math. Wiss., Springer-Verlag (1971); DOI: 10.1007/978-3-642-65033-8. DOI: https://doi.org/10.1007/978-3-642-65033-8

E. Kamke, Differentialgleichungen Lösungsmethoden und Lösungen, Springer-Verlag (2013); DOI:10.1007/978-3-663-05925-7. DOI: https://doi.org/10.1007/978-3-663-05925-7

К. S. Kedlaya, $p$-Adic differential equations, Cambridge Univ. Press (2010); DOI:10.1017/CBO9780511750922. DOI: https://doi.org/10.1017/CBO9780511750922

A. Yu. Khrennikov, S. V. Kozyrev, W. A. Zuniga-Galindo, Ultrametric pseudodifferential equations and applications, Encyclopedia Math. and Appl., Cambridge Univ. Press (2018); DOI:10.1017/9781316986707. DOI: https://doi.org/10.1017/9781316986707

A. N. Kochubei, Analysis in positive characteristic, Cambridge Tracts in Math., Cambridge Univ. Press (2009); DOI:10.1017/CBO9780511575624. DOI: https://doi.org/10.1017/CBO9780511575624

S. Lang, Algebra, Graduate Texts in Mathematics, Springer, New York (2012); DOI: 10.1007/978-1-4613-0041-0. DOI: https://doi.org/10.1007/978-1-4613-0041-0

A. F. Leont'ev, Generalization of series of exponentials (in Russian), Nauka, Moscow (1981).

R. Lid, H. Niederreiter, Finite fields, Cambridge Univ. Press (1996); DOI:10.1017/CBO9780511525926. DOI: https://doi.org/10.1017/CBO9780511525926

E. Lutz, Sur l'équation $y^2=x^3-ax-b$ dans les corps $p$-adiques, J. reine und angew. Math., 177, 238–247 (1937). DOI: https://doi.org/10.1515/crll.1937.177.238

B. Malgrange, Sur les points singuliers des équations différentielles, Enseign. Math., 20, 147–176 (1974).

C. Perez-Garcia, W. H. Schikhof, Locally convex spaces over non-Archimedean valued fields, Cambridge Stud. Adv. Math., Cambridge Univ. Press (2010); DOI:10.1017/CBO9780511729959. DOI: https://doi.org/10.1017/CBO9780511729959

S. Pincherlet, Della validitá effettiva di alcuni sviluppi in serie di funzioni, Rend. Lincei, 5, 27–33 (1896).

P. Robba, G. Christol, Equations différentielles p-adiques: applications aux sommes exponentielles, Actualités Math., vol. 12, Hermann (1994).

P. C. Sikkema, Differential operators and differential equations of infinite order with constant coefficients; researches in connection with integral functions of finite order, P. Noordhoff, Groningen (1953); DOI: 10.2307/3610004. DOI: https://doi.org/10.2307/3610004

M. F. Singer, Formal solutions of differential equations, J. Symbolic Comput., 10, 59–94 (1990). DOI: https://doi.org/10.1016/S0747-7171(08)80037-5

V. S. Vladimirov, Generalized functions in mathematical physics, Mir, Moscow (1979).

О. Л. Півень, С. Л. Гефтер, Диференціальні оператори нескінченного порядку в модулі формальних узагальнених функцій та у кільці формальних степеневих рядів, Укр. мат. журн., 74, No. 6, 784–799 (2022); DOI: 10.37863/umzh.v74i6.6955. DOI: https://doi.org/10.37863/umzh.v74i6.6955

Published
26.12.2022
How to Cite
Hefter, S. L., and A. B. Goncharuk. “Linear Differential Equation With Inhomogeneity in the Form of a Formal Power Series over a Ring With Non-Archimedean Valuation”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 11, Dec. 2022, pp. 1463 -77, doi:10.37863/umzh.v74i11.7287.
Section
Research articles