The norming sets of ${\mathcal L}\big({}^ml_{1}^n\big)$

  • Sung Guen Kim Department of Mathematics, Kyungpook National University, Republic of Korea
Keywords: norming sets, multilinear forms

Abstract

UDC 517.9

Let $n\in \mathbb{N},$ $n\geq 2.$ An element $(x_1, \ldots, x_n)\in E^n$ is called a {\em norming point} of $T\in {\mathcal L}(^n E)$ if\/ $\|x_1\| = \ldots = \|x_n\| = 1$ and $|T(x_1, \ldots, x_n)| = \|T\|, $ where ${\mathcal L}(^n E)$ denotes the space of all continuous $n$-linear forms on $E.$ For $T\in {\mathcal L}(^n E),$ we define \begin{align*}{\rm Norm}(T) = \big\{(x_1, \ldots, x_n)\in E^n\colon (x_1, \ldots, x_n) \mbox{is a norming point of} T\big\}.\end{align*} The ${\rm Norm}(T)$ is called the {\em norming set} of $T.$ For $m\in \mathbb{N},$ $m\geq 2, $ we characterize ${\rm Norm}(T)$ for every $T\in {\mathcal L}\big({}^m l_1^n\big),$ where $l_1^n = \mathbb{R}^n$ with the $l_1$-norm. As applications, we classify ${\rm Norm}(T)$ for every $T\in {\mathcal L}\big({}^m l_{1}^n\big)$ with $n = 2, 3$ and $m = 2.$

References

R. M. Aron, C. Finet, E. Werner, Some remarks on norm-attaining $n$-linear forms, Lecture Notes in Pure and Appl. Math., 172, Function Spaces (Edwardsville, IL, 1994), Dekker, New York (1995), p. 19–28.

E. Bishop, R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc., 67, 97–98 (1961). DOI: https://doi.org/10.1090/S0002-9904-1961-10514-4

Y. S. Choi, S. G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc. (2), 54, 135–147 (1996). DOI: https://doi.org/10.1112/jlms/54.1.135

S. Dineen, Complex analysis on infinite dimensional spaces, Springer-Verlag, London (1999). DOI: https://doi.org/10.1007/978-1-4471-0869-6

M. Jim'enez Sevilla, R. Payá, Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces, Studia Math., 127, 99–112 (1998). DOI: https://doi.org/10.4064/sm-127-2-99-112

S. G. Kim, The norming set of a bilinear form on $l_{∞}^2$, Comment. Math., 60, № 1-2, 37–63 (2020).

S. G. Kim, The norming set of a polynomial in ${P}(^2 l_{∞}^2)$, Honam Math. J., 42, № 3, 569–576 (2020).

S. G. Kim, The norming set of a symmetric bilinear form on the plane with the supremum norm, Mat. Stud., 55, № 2, 171–180 (2021). DOI: https://doi.org/10.30970/ms.55.2.171-180

S. G. Kim, The norming set of a symmetric 3-linear form on the plane with the $l_1$-norm, New Zealand J. Math., 51, 95–108 (2021). DOI: https://doi.org/10.53733/177

S. G. Kim, The norming sets of ${L}({}^2 l_1^2)$ and ${L}_s({}^2 l_1^3)$, Bull. Transilv. Univ. Brasov, Ser. III, 2(64), № 2, 125–150 (2022). DOI: https://doi.org/10.31926/but.mif.2022.2.64.2.10

S. G. Kim, The norming sets of ${L}({}^2 R^2_{h(w)})$, Acta Sci. Math. (Szeged), 89, № 1-2, 61–79 (2023). DOI: https://doi.org/10.1007/s44146-023-00078-7

Published
25.03.2024
How to Cite
Kim, S. G. “The Norming Sets of ${\mathcal L}\big({}^ml_{1}^n\big)$”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 3, Mar. 2024, pp. 382 -94, doi:10.3842/umzh.v76i3.7294.
Section
Research articles