Leonardo and hyper-Leonardo numbers via Riordan arrays

  • Yasemin Alp Department of Education of Mathematics and Science, Faculty of Education, Selcuk University, Konya, Turkey
  • E. Gokcen Kocer Department of Mathematics and Computer Sciences, Faculty of Science, Necmettin Erbakan University, Konya, Turkey
Keywords: Fibonacci numbers, Leonardo numbers, Riordan arrays


UDC 511

A generalization of the Leonardo numbers is defined and called the hyper-Leonardo numbers. Infinite lower triangular matrices, whose elements are Leonardo and hyper-Leonardo numbers are considered. Then the $A$- and $Z$-sequences of these matrices are obtained. Finally, the combinatorial identities between the hyper-Leonardo and Fibonacci numbers are obtained using the fundamental theorem of the Riordan arrays.


Y. Alp, E. G. Kocer, Some properties of Leonardo numbers, Konuralp J. Math., 9, № 1, 183–189 (2021).

M. Bahsi, I. Mezo, S. Solak, A symmetric algorithm for hyper-Fibonacci and hyper-Lucas numbers, Ann. Math. et Inform., 43, 19–27 (2014).

F. Y. Baran, N. Tuglu, $q$-Riordan representation, Linear Algebra and Appl., 525, 105–117 (2017).

P. Catarino, A. Borges, On Leonardo numbers, Acta Math. Univ. Comenian, 89, № 1, 75–86 (2019).

M. Cetin, C. Kizilates, F. Y. Baran, N. Tuglu, Some identities of harmonic and hyperharmonic Fibonacci numbers, Gazi Univ. J. Sci., 34, № 2, 493–504 (2021).

A. Dil, I. Mezo, A symmetric algorithm for hyperharmonic and Fibonacci numbers, Appl. Math. and Comput., 206, 942–951 (2008).

T. X. He, R. Sprugnoli, Sequence characterization of Riordan arrays, Discrete Math., 309, 3962–3974 (2008).

T. X. He, Matrix characterizations of Riordan arrays, Linear Algebra and Appl., 465, 15–42 (2015).

T. Koshy, Fibonacci and Lucas numbers with applications, John Wiley & Sons, Inc., Hoboken, NJ (2018).

G. Y. Lee, S. H. Cho, The generalized Pascal matrix via the generalized Fibonacci matrix and the generalized Pell matrix, J. Korean Math. Soc., 45, № 2, 479–491 (2008).

C. J. Louis, A. Nkwanta, Some algebraic structure of the Riordan group, Linear Algebra and Appl., 438, 2018–2035 (2012).

C. Marshall, A. Nkwanta, Fibonacci and Lucas Riordan arrays and construction of pseudo-involutions, Appl. Anal.; https://doi.org/10.1080/00036811.2021.1989418, (2021).

D. Merlini, D. G. Rogers, R. Sprugnoli, M. C. Verri, On some alternative characterizations of Riordan arrays, Canad. J. Math., 49, № 2, 301–320 (1997).

D. Merlini, R. Sprugnoli, M. C. Verri, Lagrange inversion: when and how, Acta Appl. Math., 94, 233–249 (2006).

D. G. Rogers, Pascal triangles, Catalan numbers and renewal arrays, Discrete Math., 22, 301–310 (1978).

A. G. Shannon, A note on generalized Leonardo numbers, Notes Number Theory Discrete Math., 25, № 3, 97–101 (2019).

L. W. Shapiro, S. Getu, W. J. Woan, L. C. Woodson, The Riordan group, Discrete Appl. Math., 34, 229–239 (1991).

R. Sprugnoli, Riordan arrays and combinatorial sums, Discrete Math., 132, 267–290 (1994).

N. Tuglu, F. Yesil, E. G. Kocer, M. Dziemianczuk, The $F$ analogue of Riordan representation Pascal matrices via Fibonomial coefficents, J. Appl. Math.; https://dx.doi.org/10.1155/2014/841826, (2014).

N. Tuglu, F. Yesil, M. Dziemianczuk, E. G. Kocer, $q$-Riordan array for $q$-Pascal matrix and its inverse matrix, Turkish J. Math., 40, № 5, 1038–1048 (2016).

How to Cite
Alp, Y., and E. G. Kocer. “Leonardo and Hyper-Leonardo Numbers via Riordan Arrays”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 3, Mar. 2024, pp. 326–340, doi:10.3842/umzh.v45i3.7296.
Research articles