Leonardo and hyper-Leonardo numbers via Riordan arrays
Abstract
UDC 511
A generalization of the Leonardo numbers is defined and called the hyper-Leonardo numbers. Infinite lower triangular matrices, whose elements are Leonardo and hyper-Leonardo numbers are considered. Then the $A$- and $Z$-sequences of these matrices are obtained. Finally, the combinatorial identities between the hyper-Leonardo and Fibonacci numbers are obtained using the fundamental theorem of the Riordan arrays.
References
Y. Alp, E. G. Kocer, Some properties of Leonardo numbers, Konuralp J. Math., 9, № 1, 183–189 (2021).
M. Bahsi, I. Mezo, S. Solak, A symmetric algorithm for hyper-Fibonacci and hyper-Lucas numbers, Ann. Math. et Inform., 43, 19–27 (2014).
F. Y. Baran, N. Tuglu, $q$-Riordan representation, Linear Algebra and Appl., 525, 105–117 (2017). DOI: https://doi.org/10.1016/j.laa.2017.03.018
P. Catarino, A. Borges, On Leonardo numbers, Acta Math. Univ. Comenian, 89, № 1, 75–86 (2019).
M. Cetin, C. Kizilates, F. Y. Baran, N. Tuglu, Some identities of harmonic and hyperharmonic Fibonacci numbers, Gazi Univ. J. Sci., 34, № 2, 493–504 (2021). DOI: https://doi.org/10.35378/gujs.705885
A. Dil, I. Mezo, A symmetric algorithm for hyperharmonic and Fibonacci numbers, Appl. Math. and Comput., 206, 942–951 (2008). DOI: https://doi.org/10.1016/j.amc.2008.10.013
T. X. He, R. Sprugnoli, Sequence characterization of Riordan arrays, Discrete Math., 309, 3962–3974 (2008). DOI: https://doi.org/10.1016/j.disc.2008.11.021
T. X. He, Matrix characterizations of Riordan arrays, Linear Algebra and Appl., 465, 15–42 (2015). DOI: https://doi.org/10.1016/j.laa.2014.09.008
T. Koshy, Fibonacci and Lucas numbers with applications, John Wiley & Sons, Inc., Hoboken, NJ (2018). DOI: https://doi.org/10.1002/9781118742297
G. Y. Lee, S. H. Cho, The generalized Pascal matrix via the generalized Fibonacci matrix and the generalized Pell matrix, J. Korean Math. Soc., 45, № 2, 479–491 (2008). DOI: https://doi.org/10.4134/JKMS.2008.45.2.479
C. J. Louis, A. Nkwanta, Some algebraic structure of the Riordan group, Linear Algebra and Appl., 438, 2018–2035 (2012). DOI: https://doi.org/10.1016/j.laa.2012.10.027
C. Marshall, A. Nkwanta, Fibonacci and Lucas Riordan arrays and construction of pseudo-involutions, Appl. Anal.; https://doi.org/10.1080/00036811.2021.1989418, (2021). DOI: https://doi.org/10.1080/00036811.2021.1989418
D. Merlini, D. G. Rogers, R. Sprugnoli, M. C. Verri, On some alternative characterizations of Riordan arrays, Canad. J. Math., 49, № 2, 301–320 (1997). DOI: https://doi.org/10.4153/CJM-1997-015-x
D. Merlini, R. Sprugnoli, M. C. Verri, Lagrange inversion: when and how, Acta Appl. Math., 94, 233–249 (2006). DOI: https://doi.org/10.1007/s10440-006-9077-7
D. G. Rogers, Pascal triangles, Catalan numbers and renewal arrays, Discrete Math., 22, 301–310 (1978). DOI: https://doi.org/10.1016/0012-365X(78)90063-8
A. G. Shannon, A note on generalized Leonardo numbers, Notes Number Theory Discrete Math., 25, № 3, 97–101 (2019). DOI: https://doi.org/10.7546/nntdm.2019.25.3.97-101
L. W. Shapiro, S. Getu, W. J. Woan, L. C. Woodson, The Riordan group, Discrete Appl. Math., 34, 229–239 (1991). DOI: https://doi.org/10.1016/0166-218X(91)90088-E
R. Sprugnoli, Riordan arrays and combinatorial sums, Discrete Math., 132, 267–290 (1994). DOI: https://doi.org/10.1016/0012-365X(92)00570-H
N. Tuglu, F. Yesil, E. G. Kocer, M. Dziemianczuk, The $F$ analogue of Riordan representation Pascal matrices via Fibonomial coefficents, J. Appl. Math.; https://dx.doi.org/10.1155/2014/841826, (2014). DOI: https://doi.org/10.1155/2014/841826
N. Tuglu, F. Yesil, M. Dziemianczuk, E. G. Kocer, $q$-Riordan array for $q$-Pascal matrix and its inverse matrix, Turkish J. Math., 40, № 5, 1038–1048 (2016). DOI: https://doi.org/10.3906/mat-1506-56
Copyright (c) 2024 Yasemin ALP, E.Gokcen KOCER
This work is licensed under a Creative Commons Attribution 4.0 International License.