On the solvability of Fredholm boundary-value problems in fractional Sobolev spaces

Authors

  • V. A. Mikhailets Institute of Mathematics of the Czech Academy of Sciences, Institute of Mathematics of the National Academy of Sciences of Ukraine
  • О. М. Atlasiuk Institute of Mathematics of the Czech Academy of Sciences, Institute of Mathematics of the National Academy of Sciences of Ukraine https://orcid.org/0000-0003-0186-3185
  • T. B. Skorobohach NTU of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” https://orcid.org/0000-0002-0119-8966

DOI:

https://doi.org/10.37863/umzh.v75i1.7308

Keywords:

Fredholm operator, index of operator, inhomogeneous boundary-value problem, fractional Sobolev space

Abstract

UDC 517.927

We study systems of linear ordinary differential equations with the most general inhomogeneous boundary conditions in fractional Sobolev spaces on a nite interval. The Fredholm property of these problems in the corresponding pairs of Banach spaces is proved. Their indices and dimensions of the kernels and cokernels are found. We also present examples showing the constructive character of the obtained results.

References

A. A. Boichuk, A. M. Samoilenko, Generalized inverse operators and Fredholm boundary-value problems, VSP, Utrecht, Boston (2004). DOI: https://doi.org/10.1515/9783110944679

И. Т. Кигурадзе, Некоторые сингулярные краевые задачи для обыкновенных дифференциальных уравнений, Изд-во Тбил. ун-та, Тбилиси (1975).

И. Т. Кигурадзе, Краевые задачи для систем обыкновенных дифференциальных уравнений, ВИНИТИ, 30, 3–103 (1987).

T. I. Kodlyuk, V. A. Mikhailets, N. V. Reva, Limit theorems for one-dimensional boundary-value problems, Ukrainian Math. J., 65, № 1, 77–90 (2013). DOI: https://doi.org/10.1007/s11253-013-0766-x

V. A. Mikhailets, O. B. Pelekhata, N. V. Reva, Limit theorems for the solutions of boundary-value problems, Ukrainian Math. J., 70, № 2, 243–251 (2018). DOI: https://doi.org/10.1007/s11253-018-1498-8

V. A. Mikhailets, G. A. Chekhanova, Limit theorem for general one-dimensional boundary-value problems, J. Math. Sci., 204, № 3, 333–342 (2015). DOI: https://doi.org/10.1007/s10958-014-2205-4

E. V. Gnyp, T. I. Kodlyuk, V. A. Mikhailets, Fredholm boundary-value problems with parameter in Sobolev spaces, Ukrainian Math. J., 67, № 5, 658–667 (2015). DOI: https://doi.org/10.1007/s11253-015-1105-1

T. I. Kodlyuk, V. A. Mikhailets, Solutions of one-dimensional boundary-value problems with a parameter in Sobolev spaces, J. Math. Sci., 190, № 4, 589–599 (2013). DOI: https://doi.org/10.1007/s10958-013-1272-2

Y. V. Hnyp, V. A. Mikhailets, A. A. Murach, Parameter-dependent one-dimensional boundary-value problems in Sobolev spaces, Electron. J. Different. Equat., № 81 (2017).

О. М. Atlasiuk, V. A. Mikhailets, Fredholm one-dimensional boundary-value problems with parameter in Sobolev spaces, Ukrainian Math. J., 70, № 11, 1677–1687 (2019). DOI: https://doi.org/10.1007/s11253-019-01599-7

V. A. Mikhailets, A. A. Murach, V. O. Soldatov, Continuity in a parameter of solutions to generic boundary-value problems, Electron. J. Qual. Theory Different. Equat., № 87 (2016). DOI: https://doi.org/10.14232/ejqtde.2016.1.87

O. M. Atlasiuk, V. A. Mikhailets, On the solvability of inhomogeneous boundary-value problems in Sobolev spaces, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, № 11, 3–7 (2019). DOI: https://doi.org/10.15407/dopovidi2019.11.003

L. Hörmander, The analysis of linear partial differential operators. III: Pseudo-differential operators, Springer, Berlin (1985).

A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math. Stud., vol. 204, Elsevier (North-Holland) Sci. Publ., Amsterdam (2006).

V. A. Mikhailets, T. B. Skorobohach, Fredholm boundary-value problems in Sobolev–Slobodetsky spaces, Ukrainian Math. J., 73, № 7, 1071–1083 (2021). DOI: https://doi.org/10.1007/s11253-021-01977-0

T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York (1966). DOI: https://doi.org/10.1007/978-3-662-12678-3

Published

05.02.2023

Issue

Section

Research articles

How to Cite

Mikhailets, V. A., et al. “On the Solvability of Fredholm Boundary-Value Problems in Fractional Sobolev Spaces”. Ukrains’kyi Matematychnyi Zhurnal, vol. 75, no. 1, Feb. 2023, pp. 96-104, https://doi.org/10.37863/umzh.v75i1.7308.