On some identities involving certain Hardy sums and Kloosterman sum
Abstract
UDC 511
We give a new reciprocity theorem for the Hardy sum $s_{5}(h,p).$ Also, a hybrid mean value problem involving the Hardy sum $s_{4}(h,p)$ and Kloosterman sum is studied and two exact computational formulae are obtained.
References
T. M. Apostol, Introduction to analytic number theory, Undergrad. Texts Math., Springer-Verlag, New York (1976). DOI: https://doi.org/10.1007/978-3-662-28579-4
B. C. Berndt, Analytic Eisenstein series, theta functions and series relations in the spirit of Ramanujan, J. reine und angew. Math., 303/304, 332 – 365 (1978), https://doi.org/10.1515/crll.1978.303-304.332 DOI: https://doi.org/10.1515/crll.1978.303-304.332
S. Chowla, On Kloosterman’s sum, Nor. Vidensk. Selsk. Fak. Frondheim, 40, 70 – 72 (1967).
J. B. Conrey, E. Fransen, R. Klein, C. Scott, Mean values of Dedekind sums, J. Number Theory, 56, № 2, 214 – 226 (1996), https://doi.org/10.1006/jnth.1996.0014 DOI: https://doi.org/10.1006/jnth.1996.0014
X. Du, L. Zhang, On the Dedekind sums and its new reciprocity formula, Miskolc Math. Notes, 19, 235 – 239 (2018), https://doi.org/10.18514/mmn.2018.1664 DOI: https://doi.org/10.18514/MMN.2018.1664
L. A. Goldberg, Transformations of theta-functions and analogues of Dedekind sums, Ph. D. Thesis, Univ. Illinois, Urbana (1981).
A. V. Malyshev, A generalization of Kloosterman sums and their estimates (in Russian), Vestn. Leningr. Univ., 15, 59 – 75 (1960).
W. Peng, T. Zhang, Some identities involving certain Hardy sum and Kloosterman sum, J. Number Theory, 165, 355 – 362 (2016), https://doi.org/10.1016/j.jnt.2016.01.028 DOI: https://doi.org/10.1016/j.jnt.2016.01.028
H. Rademacher, E. Grosswald, Dedekind sums, Math. Assoc. America, Washington, D.C. (1972). DOI: https://doi.org/10.5948/UPO9781614440161
R. Sitaramachandrarao, Dedekind and Hardy sums, Acta Arith., 48, № 4, 325 – 340 (1987), https://doi.org/10.4064/aa-48-4-325-340 DOI: https://doi.org/10.4064/aa-48-4-325-340
H. Walum, An exact formula for an average of $L$-series, Ill. J. Math., 26, 1 – 3 (1982). DOI: https://doi.org/10.1215/ijm/1256046895
Z. Wenpeng, L. Yanni, A hybrid mean value related to the Dedekind sums and Kloosterman sums, Sci. China Math., 53, 2543 – 2550 (2010), https://doi.org/10.1007/s11425-010-3153-1 DOI: https://doi.org/10.1007/s11425-010-3153-1
H. Zhang, W. Zhang, On the identity involving certain Hardy sums and Kloosterman sums, J. Inequal. and Appl., 52 (2014), 9 p., https://doi.org/10.1186/1029-242X-2014-52 DOI: https://doi.org/10.1186/1029-242X-2014-52
W. Zhang, On the mean values of Dedekind sums, J. Theor. Nombres Bordeaux, 8, 429 – 442 (1996). DOI: https://doi.org/10.5802/jtnb.179
W. Zhang, A note on the mean square value of the Dedekind sums, Acta Math. Hung., 86, 119 – 135 (2000), https://doi.org/10.1023/A:1006724724840 DOI: https://doi.org/10.1023/A:1006724724840
Copyright (c) 2020 Muhammet Cihat Dağlı
This work is licensed under a Creative Commons Attribution 4.0 International License.