Study of quantum Ostrowski's-type inequalities for differentiable convex functions

  • M. A. Ali Jiangsu Key Laboratory for NSLSCS, School Math. Sci., Nanjing Normal Univ., China
  • M. Fečkan Comenius Univ. Bratislava and Math. Inst., Slovak Acad. Sci., Bratislava, Slovakia
  • A. Mateen COMSATS Univ. Islamabad Sahiwal Campus, Pakistan
Keywords: Hermite–Hadamard inequalities, Ostrowski’s inequalities, q-calculus, convex functions

Abstract

UDC 517.9

We prove some new  $q$-Ostrowski's-type inequalities for differentiable and bounded functions.  Moreover, we present the relationship between the newly established   and  already known inequalities, which is very interesting for  new readers.  Some applications to special means of real numbers are given to make the results more valuable.

References

M. A. Ali, H. Budak, M. Abbas, Y.-M. Chu, Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second $q^{{y}_{2}}$-derivatives, Adv. Different. Equat., 2021, 1–12 (2021). DOI: https://doi.org/10.1186/s13662-020-03163-1

M. A. Ali, H. Budak, Z. Zhang, H. Yildrim, Some new Simpson's type inequalities for co-ordinated convex functions in quantum calculus, Math. Methods Appl. Sci., 44, 4515–4540 (2021). DOI: https://doi.org/10.1002/mma.7048

M. A. Ali, M. Abbas, H. Budak, P. Agarwal, G. Murtaza, Y.-M. Chu, New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions, Adv. Different. Equat., 2021, 1–21 (2021). DOI: https://doi.org/10.1186/s13662-021-03226-x

M. A. Ali, Y.-M. Chu, H. Budak, A. Akkurt, H. Yildrim, Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables, Adv. Different. Equat., 2021, 1–26 (2021). DOI: https://doi.org/10.1186/s13662-020-03195-7

M. A. Ali, N. Alp, H. Budak, Y.-M. Chu, Z. Zhang, On some new quantum midpoint type inequalities for twice quantum differentiable convex functions, Open Math., 19, 427–439 (2021). DOI: https://doi.org/10.1515/math-2021-0015

M. A. Ali, H. Budak, A. Akkurt, Y.-M. Chu, Quantum Ostrowski type inequalities for twice quantum differentiable functions in quantum calculus, Open Math., 19, 440–449 (2021). DOI: https://doi.org/10.1515/math-2021-0020

M. A. Ali, H. Budak, K. Nanlaopon, Z. Abdullah, Simpson's and Newton's inequalities for $(alpha,m) $-convex functions via quantum calculus} (2021).

N. Alp, M. Z. Sarikaya, M. Kunt, İ. İşcan, $q$-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci., 30, 193–203 (2018). DOI: https://doi.org/10.1016/j.jksus.2016.09.007

N. Alp, M. Z. Sarikaya, Hermite Hadamard's type inequalities for co-ordinated convex functions on quantum integral, Appl. Math. E-Notes, 20, 341–356 (2020).

S. Bermudo, P. Kórus, J. N. Valdés, On $q$-Hermite–Hadamard inequalities for general convex functions, Acta Math. Hungar., 162, 364–374 (2020). DOI: https://doi.org/10.1007/s10474-020-01025-6

K.Brahim, S. Taf, L. Rihahi, Some result for Hadamard-type inequalities in quantum calculus, Matematiche, 69, 243–258 (2014).

H. Budak, Some trapezoid and midpoint type inequalities for newly defined quantum integrals, Proyecciones, 40, 199–215 (2021). DOI: https://doi.org/10.22199/issn.0717-6279-2021-01-0013

H. Budak, M. A. Ali, M. Tarhanaci, Some new quantum Hermite–Hadamard-like inequalities for coordinated convex functions, J. Optim. Theory and Appl., 186, 899–910 (2020). DOI: https://doi.org/10.1007/s10957-020-01726-6

H. Budak, S. Erden, M. A. Ali, Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, Math. Methods Appl. Sci., 44, 378–390 (2020). DOI: https://doi.org/10.1002/mma.6742

H. Budak, M. A. Ali, N. Alp, Y.-M. Chu, Quantum Ostrowski type integral inequalities, J. Math. Inequal. (2021) (to appear).

P. Cerone, S. S. Dragomir, Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions, Demonstr. Math., 37, 299–308 (2004). DOI: https://doi.org/10.1515/dema-2004-0208

H. Kavurmaci, M. Avci, M. E. Özdemir, New inequalities of Hermite–Hadamard type for convex functions with applications, J. Inequal. and Appl., 2011, Article 86 (2011). DOI: https://doi.org/10.1186/1029-242X-2011-86

F. H. Jackson, On a $q$-definite integrals, Quart. J. Pure Appl. Math., 41, 193–203 (1910).

S. Jhanthanam, J. Tariboon, S. K. Ntouyas, K. Nonlaopon, On $q$-Hermite–Hadamard inequalities for differentiable convex functions, Mathematics, 7, Article 632 (2019). DOI: https://doi.org/10.3390/math7070632

V. Kac, P. Cheung, Quantum calculus, Springer (2001). DOI: https://doi.org/10.1007/978-1-4613-0071-7

H. Kalsoom, J.-D. Wu, S. Hussain, M. A. Latif, Simpson's type inequalities for co-ordinated convex functions on quantum calculus, Symmetry, 11, Article 768 (2019). DOI: https://doi.org/10.3390/sym11060768

Z. Liu, A note on Ostrowski type inequalities related to some $s$-convex functions in the second sense, Bull. Korean Math. Soc., 49, 775–785 (2012). DOI: https://doi.org/10.4134/BKMS.2012.49.4.775

W. Liu, Z. Hefeng, Some quantum estimates of Hermite–Hadamard inequalities for convex functions, J. Appl. Anal. and Comput., 7, 501–522 (2016). DOI: https://doi.org/10.11948/2017031

M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite–Hadamard inequalities, Appl. Math. and Comput., 251, 675–679 (2015). DOI: https://doi.org/10.1016/j.amc.2014.11.090

M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. and Comput., 269, 242–251 (2015). DOI: https://doi.org/10.1016/j.amc.2015.07.078

A. Ostrowski, Über die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Helv., 10, 226–227 (1938). DOI: https://doi.org/10.1007/BF01214290

I. B. Sial, S. Mei, M. A. Ali, K. Nanlaopon, On some generalized Simpson's and Newton's inequalities for $(alpha,m) $-convex functions in $q$-calculus, Mathematics, 2021, Article 3266 (2021). DOI: https://doi.org/10.3390/math9243266

J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Different. Equat., 2013, 1–19 (2013). DOI: https://doi.org/10.1186/1687-1847-2013-282

M. Vivas-Cortez, M. A. Ali, A. Kashuri, I. B. Sial, Z. Zhang, Some new Newton's type integral inequalities for co-ordinated convex functions in quantum calculus, Symmetry, 12, Article 1476 (2020). DOI: https://doi.org/10.3390/sym12091476

M. Vivas-Cortez, A. Kashuri, R. Liko, J. E. Hernádez, Quantum estimates of Ostrowski inequalities for generalized ϕ-convex functions, Symmetry, 11, Article 1513 (2019). DOI: https://doi.org/10.3390/sym11121513

P. P. Wang, T. Zhu, T. S. Du, Some inequalities using $s$-preinvexity via quantum calculus, J. Interdisciplinary Math., 24, 613–636 (2021). DOI: https://doi.org/10.1080/09720502.2020.1809117

Published
05.02.2023
How to Cite
Ali, M. A., M. Fečkan, and A. Mateen. “Study of Quantum Ostrowski’s-Type Inequalities for Differentiable Convex Functions”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 75, no. 1, Feb. 2023, pp. 7 - 27, doi:10.37863/umzh.v75i1.7313.
Section
Research articles