On the Berezin number of operators on the reproducing kernel of Hilbert space and related questions

  • Ulaş Yamancı Department of Statistics, Suleyman Demirel University, Isparta, Turkey
  • Ismail M. Karlı Department of Statistics, Suleyman Demirel University, Isparta, Turkey
Keywords: Berezin number, Berezin symbol, Berezin norm, reproducing kernel Hilbert space, inequalities

Abstract

UDC 517.956

We obtain some new inequalities for the Berezin number of operators via the Cauchy–Schwarz-type inequalities. Some other related questions are also discussed.

References

J. Aujla, F. Silva, Weak majorization inequalities and convex functions, Linear Algebra and Appl., 369, 217–233 (2003). DOI: https://doi.org/10.1016/S0024-3795(02)00720-6

M. W. Alomari, On Cauchy–Schwarz type inequalities and applications to numerical radius inequalities, Ric. Mat. (2022); doi.org/10.1007/s11587-022-00689-2. DOI: https://doi.org/10.1007/s11587-022-00689-2

N. Altwaijry, K. Feki, N. Minculete, Some new estimates for the Berezin number of hilbert space operators, Axioms, 11, 1–17 (2022). DOI: https://doi.org/10.3390/axioms11120683

N. Aronzajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68, 337–404 (1950). DOI: https://doi.org/10.1090/S0002-9947-1950-0051437-7

F. A. Berezin, Covariant and contravariant symbols for operators, Math. USSR-Izvestiya, 6, 1117–1151 (1972). DOI: https://doi.org/10.1070/IM1972v006n05ABEH001913

M. Bakherad, U. Yamancı, New estimations for the Berezin number inequality, J. Inequal. and Appl., Paper № 40 (2020). DOI: https://doi.org/10.1186/s13660-020-2307-0

P. Bhunia, K. Paul, A. Sen, Inequalities involving Berezin norm and Berezin number, Complex Anal. and Oper. Theory, 17, № 7, 1–17 (2023). DOI: https://doi.org/10.1007/s11785-022-01305-9

S. S. Dragomir, Inequalities for the numerical radius of linear operators in Hilbert spaces, Springer-Briefs Math. (2013). DOI: https://doi.org/10.1007/978-3-319-01448-7

M. Hajmohamadi, R. Lashkaripour, M. Bakherad, Improvements of Berezin number inequalities, Linear and Multilinear Algebra, 68, № 6, 1218–1229 (2020). DOI: https://doi.org/10.1080/03081087.2018.1538310

T. Furuta, J. Mićić Hot, J. Peçarić, Y. Seo, Mond–Peçarić method in operator inequalities (inequalities for bounded selfadjoint operators on a Hilbert space), Element, Zagreb (2005).

M. T. Garayev, U. Yamancı, çebyşev's type inequalities and power inequalities for operators of Berezin number, Filomat, 33, № 8, 2307–2316 (2019). DOI: https://doi.org/10.2298/FIL1908307G

M. T. Garayev, M. W. Alomari, Inequalities for the Berezin number of operators and related questions, Complex Anal. and Oper. Theory, 15, 1–30 (2021). DOI: https://doi.org/10.1007/s11785-021-01078-7

M. T. Karaev, Berezin symbol and invertibility of operators on the functional Hilbert spaces, J. Funct. Anal., 238, № 1, 181–192 (2006). DOI: https://doi.org/10.1016/j.jfa.2006.04.030

T. Kato, Notes on some inequalities for linear operators, Math. Ann., 125, 208–212 (1952). DOI: https://doi.org/10.1007/BF01343117

F. Kittaneh, H. R. Moradi, Cauchy–Schwarz type inequalities and applications to numerical radius inequalities, Math. Inequal. Appl., 23, № 3, 1117–1125 (2020). DOI: https://doi.org/10.7153/mia-2020-23-85

D. S. Mitrinović, J. Peçarić, A. M. Fink, Classical and new inequalities in analysis, Kluwer Acad. Publ., Dordrecht (1993). DOI: https://doi.org/10.1007/978-94-017-1043-5

S. Sahoo, N. Das, D. Mishra, Berezin number and numerical radius inequalities for operators on Hilbert spaces, Adv. Oper. Theory, 5, 714–727 (2020). DOI: https://doi.org/10.1007/s43036-019-00035-8

S. Sahoo, N. Das, N. C. Rout, On Berezin number inequalities for operator matrices, Acta Math. Sinica (Engl. Ser.), 37, № 6, 873–892 (2021). DOI: https://doi.org/10.1007/s10114-021-9514-6

S. Saitoh, Y. Sawano, Theory of reproducing kernels and applications, Springer, Singapore (2016). DOI: https://doi.org/10.1007/978-981-10-0530-5

A. Sen, P. Bhunia, K. Paul, Berezin number inequalities of operators on reproducing kernel Hilbert spaces, Rocky Mountain J. Math., 52, № 3, 1039–1046 (2022). DOI: https://doi.org/10.1216/rmj.2022.52.1039

R. Tapdigoglu, New Berezin symbol inequalities for operators on the reproducing kernel Hilbert space, Operators and Matrices, 15, № 3, 1031–1043 (2021). DOI: https://doi.org/10.7153/oam-2021-15-64

U. Yamancı, M. Garayev, C. Çelik, Hardy–Hilbert type inequality in reproducing kernel Hilbert space: its applications and related results, Linear and Multilinear Algebra, 67, № 4, 830–842 (2019). DOI: https://doi.org/10.1080/03081087.2018.1490688

U. Yamancı, R. Tunç, M. Gürdal, Berezin number, Grüss-type inequalities and their applications, Bull. Malays. Mathe. Sci. Soc., 43, № 3, 2287–2296 (2020). DOI: https://doi.org/10.1007/s40840-019-00804-x

U. Yamancı, İ. M. Karlı, Further refinements of the Berezin number inequalities on operators, Linear and Multilinear Algebra, 70, № 20, 5237–5246 (2022). DOI: https://doi.org/10.1080/03081087.2021.1910123

K. Zhu, Operator theory in function spaces, second ed., Mathematical Surveys and Monographs, vol. 138, Amer. Math. Soc., Providence, R. I. (2007). DOI: https://doi.org/10.1090/surv/138

Published
26.04.2024
How to Cite
YamancıU., and KarlıI. M. “On the Berezin Number of Operators on the Reproducing Kernel of Hilbert Space and Related Questions”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 4, Apr. 2024, pp. 607 -16, doi:10.3842/umzh.v74i4.7330.
Section
Research articles