Turán-type inequalities for generalized k-Bessel functions
Abstract
We propose an approach to the generalized $\rm{k}$-Bessel function defined by $$\rm{U}_{p,q,r}^{\rm{k}}(z)=\sum\limits_{n=0}^{\infty}\frac{(-r)^{n}}{\Gamma_{\rm{k}}\left(n\rm{k}+p+\dfrac{q+1}{2}\rm{k}\right)n!}\left(\dfrac{z}{2}\right) ^{2n+\frac{p}{\rm{k}}},$$ where $\rm{k}>0$ and $p,q,r\in\mathbb{C}$. We discuss the uniform convergence of $\rm{U}_{p,q,r}^{\rm{k}}(z).$ Moreover, we prove that the analyzed function is entire and determine its growth order and type. We also find its Weierstrass factorization, which turns out to be an infinite product uniformly convergent on a compact subset of the complex plane. The integral representation for $\rm{U}_{p,q,r}^{\rm{k}}(z)$ is found by using the representation for $\rm{k}$-beta functions. We also prove that the specified function is a solution of a second-order differential equation that generalizes certain well-known differential equations for the classical Bessel functions. In addition, some interesting properties, such as recurrence and differential relations, are demonstrated. Some of these properties can be used to establish some Turán-type inequalities for this function. Ultimately, we study the monotonicity and log-convexity of the normalized form of the modified \textrm{k}-Bessel function $\rm{T}_{p,q,1}^{\rm{k}}$ defined by $\rm{T}_{p,q,1}^{\rm{k}}(z)=i^{-\frac{p}{k}}\rm{U}_{p,q,1}^{\rm{k}}(iz),$ as well as the quotient of the modified \textrm{k}\textit{-}Bessel function, exponential, and \textrm{k}\textit{-}hypergeometric functions. In this case, the leading concept of the proofs comes from the monotonicity of the ratio of two power series.
References
M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, New York (1965). DOI: https://doi.org/10.1063/1.3047921
P. Agarwal, M. Chand, G. Singh, Certain fractional kinetic equations involving the product of generalized $k$-Bessel function, Alex. Eng. J., 55, № 4, 3053–3059 (2016). DOI: https://doi.org/10.1016/j.aej.2016.07.025
P. Agarwal, M. Chand, J. Choi, G. Singh, Certain fractional integrals and image formulas of generalized $k$-Bessel function, Commun. Korean Math. Soc., 33, № 2, 423–436 (2018).
P. Agarwal, S. K. Ntouyas, S. Jain, M. Chand, G. Singh, Fractional kinetic equations involving generalized $k$-Bessel function via Sumudu transform, Alex. Eng. J., 57, 1937–1942 (2018). DOI: https://doi.org/10.1016/j.aej.2017.03.046
İ. Aktaş, On monotonic and logarithmic concavity properties of generalized $k$-Bessel function, Hacet. J. Math. and Stat., 50, № 1, 180–187 (2021). DOI: https://doi.org/10.15672/hujms.621072
R. Askey, H. Pollard, Some absolutely monotonic and completely monotonic functions, SIAM J. Math. Anal., 5, 58–63 (1974). DOI: https://doi.org/10.1137/0505008
á. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen, 73, 155–178 (2008). DOI: https://doi.org/10.5486/PMD.2008.4126
á. Baricz, Bounds for modified Bessel functions of the first and second kinds, Proc. Edinb. Math. Soc., 53, 575–599 (2010). DOI: https://doi.org/10.1017/S0013091508001016
R. W. Barnard, M. B. Gordy, K. C. Richards, A note on Turán type and mean inequalities for the Kummer function, J. Math. Anal. and Appl., 349, № 1, 259–263 (2009). DOI: https://doi.org/10.1016/j.jmaa.2008.08.024
M. Biernacki, J. Krzyż, On the monotonity of certain functionals in the theory of analytic function, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 9, 135–147 (1957).
F. Black, J. Cox, Valuing corporate securities: some effects of bond indenture provisions, J. Finance, 31, № 2, 351–367 (1976). DOI: https://doi.org/10.1111/j.1540-6261.1976.tb01891.x
M. Carey, M. B. Gordy, The bank as grim reaper: debt composition and recoveries on defaulted debt, Preprint (2007).
R. Diaz, C. Teruel, rm{q, k}-Generalized gamma and beta functions, J. Nonlinear Math. Phys., 12, 118–134 (2005). DOI: https://doi.org/10.2991/jnmp.2005.12.1.10
R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer $k$-symbol, Divulg. Mat., 15, 179–192 (2007).
R. Diaz, C. Ortiz, E. Pariguan, On the $k$-gamma $q$-distribution, Cent. Eur. J. Math., 8, 448–458 (2010). DOI: https://doi.org/10.2478/s11533-010-0029-0
C. Efthimiou, Introduction to functional equations: theory and problem–solving strategies for mathematical competitions and beyond, MSRI (2011).
K. S. Gehlot, Differential equation of $k$-Bessel's function and its properties, Nonlinear Anal., Different. Equat., 2, № 2, 61–67 (2014). DOI: https://doi.org/10.12988/nade.2014.3821
K. S. Gehlot, Recurrence relations of $k$-Bessel's function, Thai J. Math., 14, 677–685 (2016).
K. S. Gehlot, S. D. Purohit, Integral representations of the $k$-Bessel's function, Honam Math. J., 38, 17–23 (2016). DOI: https://doi.org/10.5831/HMJ.2016.38.1.17
M. E. Gurtin, Topics infinite elasticity, CBMS-NSF Regional Conference, Ser. Appl. Math., SIAM, Philadelphia (1981).
E. J. Hinch, G. Schubert, Strong streaming induced by a moving thermal wave, J. Fluid Mech., 47, № 2, 291–304 (1971). DOI: https://doi.org/10.1017/S002211207100106X
W. Hoppe, W. Lohmann, H. Markl, H. Zeigler (eds.), Biophysics, Springer-Verlag, Berlin (1983). DOI: https://doi.org/10.1007/978-3-642-68877-5
B. Ya. Levin, Lectures on entire functions, Transl. Math. Monogr., vol. 150, Amer. Math. Soc. (1996). DOI: https://doi.org/10.1090/mmono/150
R. J. Mceliece, B. Reznick, J. B. Shearer, A Turán inequality arising in information theory, SIAM J. Math. Anal., 12, № 6, 931–934 (1981). DOI: https://doi.org/10.1137/0512078
R. C. Merton, On the pricing of corporate debt: the risk structure of interest rates, J. Finance, 29, № 2, 449–470 (1974). DOI: https://doi.org/10.1111/j.1540-6261.1974.tb03058.x
S. R. Mondal, M. S. Akel, Differential equation and inequalities of the generalized $k$-Bessel functions, J. Inequal. and Appl., 2018, № 14, Article 175 (2018). DOI: https://doi.org/10.1186/s13660-018-1772-1
G. Rizzoni, Fundamentals of electrical engineering, McGraw-Hill (2009).
H.-J. Runckel, Zeros of entire functions, Trans. Amer. Math. Soc., 143, 343–362 (1969). DOI: https://doi.org/10.2307/1995253
G. Singh, P. Agarwal, M. Chand, S. Jain, Certain fractional kinetic equations involving generalized $k$-Bessel function, Trans. A. Razmadze Math. Inst., 172, 559–570 (2018). DOI: https://doi.org/10.1016/j.trmi.2018.03.001
G. Szegö, On an inequality of P. Turán concerning Legendre polynomials, Bull. Amer. Math. Soc., 54, 401–405 (1948). DOI: https://doi.org/10.1090/S0002-9904-1948-09017-6
E. Toklu, Radii of starlikeness and convexity of generalized Struve functions, Hacet. J. Math. and Stat., 49, № 4, 1216–1233 (2020). DOI: https://doi.org/10.15672/hujms.518154
P. Turán, On the zeros of the polynomials of Legendre, Căsopis Pest. Mat. Fys., 75, 113–122 (1950). DOI: https://doi.org/10.21136/CPMF.1950.123879
H. Waalkens, J. Wiersig, H. R. Dullin, Elliptic quantum billiard, Ann. Phys., 260, 50–90 (1997). DOI: https://doi.org/10.1006/aphy.1997.5715
G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Univ. Press, Cambridge (1966).
H. M. Zayed, On generalized Bessel–Maitland function, Adv. Difference Equat., 2021, 432 (2021); https://doi.org/10.1186/ s13662-021-03577-5.
Copyright (c) 2024 Hanaa Zayed
This work is licensed under a Creative Commons Attribution 4.0 International License.