On the jump control problem for boundary-value problems with state-dependent impulses

Keywords: Non-linear system of differential equations, state-dependent jump, parameterization, successive approximations, jump control

Abstract

UDC 517.9

We show how an appropriate parametrization technique and special successive approximations can help to control  unknown jumps in the case of nonlinear boundary-value problems with state-dependent impulses.  The practical application of the technique is shown on a numerical example.

References

I. Rachånková, J. Tomeček, State-dependent impulses: boundary value problems on compact interval, vol. 6, Atlantis Briefs Different. Equat., Atlantic Press, Paris (2015). DOI: https://doi.org/10.2991/978-94-6239-127-7

I. Rachånková, L. Rachånek, A. Rontó, M. Rontó, A constructive approach to boundary value problems with state-dependent impulses, Appl. Math. and Comput., 274, 726–744 (2016). DOI: https://doi.org/10.1016/j.amc.2015.11.033

A. Rontó, I. Rachånková, M. Rontó, L. Rachånek, Investigation of solutions of state-dependent multi-impulsive boundary value problems, Georgian Math. J., 24, № 2, 287–312 (2017). DOI: https://doi.org/10.1515/gmj-2016-0084

A. Rontó, M. Rontó, J. Varha, A new approach to non-local boundary value problems for ordinary differential systems, Appl. Math. and Comput., 250, 689–700 (2015). DOI: https://doi.org/10.1016/j.amc.2014.11.021

M. Ronto, A. M. Samoilenko, Numerical-analytic methods in the theory of boundary-value problems, World Sci. Publ. Co., River Edge, NJ (2000). DOI: https://doi.org/10.1142/3962

A. Rontó, M. Rontó, On nonseparated three-point boundary value problems for linear functional differential equations, Abstr. and Appl. Anal., Article ID 326052, 1–22 (2011). DOI: https://doi.org/10.1155/2011/326052

A. Rontó, M. Rontó, Existence results for three-point boundary value problems for systems of linear functional differential equations, Carpathian J. Math., 28, № 1, 163--182 (2012).

A. Rontó, M. Rontó, N. Shchobak, Constructive analysis of periodic solutions with interval halving, Bound. Value Probl., 2013, № 57, 1–34 (2013). DOI: https://doi.org/10.1186/1687-2770-2013-57

A. Rontó, M. Rontó, N. Shchobak, On finding solutions of two-point boundary value problems for a class of non-linear functional differential systems} (2012). DOI: https://doi.org/10.14232/ejqtde.2012.3.13

A. Rontó, M. Rontó, Successive approximation techniques in non-linear boundary value problems for ordinary differential equations, Handbook of Differential Equations: Ordinary Differential Equations, vol. IV, Handb. Different. Equat., Elsevier/North-Holland, Amsterdam (2008), p.~441–592. DOI: https://doi.org/10.1016/S1874-5725(08)80010-7

A. Rontó, M. Rontó, On constructive investigation of a class of non-linear boundary value problems for functional differential equations, Carpathian J. Math., 29, № 1, 91–108 (2013).

A. Rontó, M. Rontó, G. Holubová, P. Nečesal, Numerical-analytic technique for investigation of solutions of some nonlinear equations with Dirichlet conditions, Bound. Value Probl., № 58, 1–20 (2011). DOI: https://doi.org/10.1186/1687-2770-2011-58

B. Påža, A. Rontó, M. Rontó, N. Shchobak, On solutions of nonlinear boundary-value problems the components of which vanish at certain points, Ukrainian Math. J., 70, № 1, 101–123 (2018). DOI: https://doi.org/10.1007/s11253-018-1490-3

A. Rontó, M. Rontó, N. Shchobak, On periodic solutions of systems of linear differential equations with argument deviations, J. Math. Sci., 263, № 2, 282–298 (2022). DOI: https://doi.org/10.1007/s10958-022-05926-5

A. Rontó, M. Rontó, N. Shchobak, Parametrisation for boundary value problems with transcendental non-linearities using polynomial interpolation, Electron. J. Qual. Theory Different. Equat., Paper № 59, 1–22 (2018). DOI: https://doi.org/10.14232/ejqtde.2018.1.59

A. Rontó, M. Rontó, Periodic successive approximations and interval halving, Miskolc Math. Notes, 13, № 2, 459–482 (2012). DOI: https://doi.org/10.18514/MMN.2012.562

A. Rontó, M. Rontó, N. Shchobak, Notes on interval halving procedure for periodic and two-point problems, Bound. Value Probl., 2014, № 164, 1–20 (2014). DOI: https://doi.org/10.1186/s13661-014-0164-9

A. Rontó, M. Rontó, J. Varha, On non-linear boundary value problems and parametrisation at multiple nodes, Electron. J. Qual. Theory Different. Equat., Paper № 80, 1–18 (2016). DOI: https://doi.org/10.14232/ejqtde.2016.1.80

Published
05.02.2023
How to Cite
RontóA., RontóM., and RontоováN. “On the Jump Control Problem for Boundary-Value Problems With State-Dependent Impulses”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 75, no. 1, Feb. 2023, pp. 121 -37, doi:10.37863/umzh.v75i1.7390.
Section
Research articles