On center graphs of finite associative rings
Abstract
UDC 512.5
We consider a finite associative ring $R,$ which may have or may not have a unit element. We also examine its center denoted by $Z(R).$ Our main focus is on the introduction of two distinct graphs associated with $R,$ namely, the center graph denoted by $GC(R)$ and the strict center graph denoted by $\overline{GC(R)}.$
We present the properties of $GC(R)$ and explore its implications on the nature of $Z(R).$ Specifically, we demonstrate that if $GC(R)$ is complete, then $Z(R)$ is an ideal in $R.$ Furthermore, in the case where $R$ is a unital ring, the completeness of $GC(R)$ leads to the conclusion that $R$ is a commutative ring.
As a specific application of our results, we provide an explicit construction of the graph $\overline{GC}(T_2(p)),$ where $T_2(p)$ represents the ring of upper-triangular matrices with entries in the ring $\mathbb{Z}/p\mathbb{Z}$ and $p$ is a prime integer.
In our investigations of the center graph and strict center graph, we aim to shed light on the properties of finite associative rings and their centers, thus providing valuable insights and applications in the ring theory.
References
S. Akbari, M. Ghandehari, M. Hadian, A. Mohammadian, On commuting graphs of semisimple rings, Linear Algebra and Appl., 390, 345–355 (2004). DOI: https://doi.org/10.1016/j.laa.2004.05.001
S. Akbari, D. Kiani, F. Mohammadi, S. Moradi, The total graph and regular graph of a commutative ring, J. Pure and Appl. Algebra, 213, № 12, 2224–2228 (2009). DOI: https://doi.org/10.1016/j.jpaa.2009.03.013
S. Akbari, H. R. Maimani, S. Yassemi, When a zero-divisor graph is planar or a complete $r$-partite graph, J. Algebra, 270, № 1, 169–180 (2003). DOI: https://doi.org/10.1016/S0021-8693(03)00370-3
S. Akbari, A. Mohammadian, H. Radjavi, P. Raja, On the diameters of commuting graphs, Linear Algebra and Appl., 418, № 1, 161–176 (2006). DOI: https://doi.org/10.1016/j.laa.2006.01.029
D. F. Anderson, M. Axtell, J. Stickles, Zero-divisor graphs in commutative rings, Commutative Algebra: Noetherian and Non-Noetherian Perspectives, Springer (2010), p.~23–45. DOI: https://doi.org/10.1007/978-1-4419-6990-3_2
D. F. Anderson, A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra, 36, № 8, 3073–3092 (2008). DOI: https://doi.org/10.1080/00927870802110888
D. F. Anderson, A. Badawi, The total graph of a commutative ring, J. Algebra, 320, № 7, 2706–2719 (2008). DOI: https://doi.org/10.1016/j.jalgebra.2008.06.028
D. F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217, 434–447 (1999). DOI: https://doi.org/10.1006/jabr.1998.7840
I. Beck, Coloring of commutative rings, J. Algebra, 116, № 1, 208–226 (1988). DOI: https://doi.org/10.1016/0021-8693(88)90202-5
N. Biggs, Algebraic graph theory (Cambridge Mathematical Library), 2nd ed., Cambridge Univ. Press, Cambridge (1993).
T. T. Chelvam, T. Asir, On the genus of the total graph of a commutative ring, Comm. Algebra, 41, № 1, 142–153 (2013). DOI: https://doi.org/10.1080/00927872.2011.624147
M. Habibi, E. Yetkın Çelıkel, C. Abdıoǧu, Clean graph of a ring, J. Algebra and Appl., 20, № 09, Article~2150156 (2021). DOI: https://doi.org/10.1142/S0219498821501565
B. R. Mcdonald, Finite rings with identity, Pure and Appl. Math., Ser. Monogr. and Textbooks (1974).
G. R. Omidi, E. Vatandoost, On the commuting graph of rings, J. Algebra and Appl., 10, № 03, 521–527 (2011). DOI: https://doi.org/10.1142/S0219498811004811
M. Shi, S. Li, J. Kim, P. Solé, LCD and ACD codes over a noncommutative non-unital ring with four elements, Cryptography and Commun., 14, 627–640 (2022). DOI: https://doi.org/10.1007/s12095-021-00545-4
R. Sobhani, Cyclic codes over a noncommutative finite chain ring, Cryptography and Commun., 10, 519–530 (2018). DOI: https://doi.org/10.1007/s12095-017-0238-5
V. I. Voloshin, Introduction to graph theory, Nova Sci. Publ. Inc., New York (2009).
Copyright (c) 2024 mohamed jorf
This work is licensed under a Creative Commons Attribution 4.0 International License.