Almost periodic solutions of damping wave equation with impulsive action

  • A. V. Dvornyk Institute of Mathematics of the NAS of Ukraine
  • V. I. Tkachenko Institute of Mathematics NAS of Ukraine
Keywords: impulsive action, almost periodic solutions, abstract Banach space, damping wave equation

Abstract

UDC 517.9

We obtain sufficient conditions for the existence of piecewise continuous almost periodic solutions to a strongly damped semilinear wave equation with impulsive action.

References

A. N. Carvalho, J. W. Cholewa, T. Dlotko, Strongly damped wave problems: bootstrapping and regularity of solutions, J. Different. Equat., 244, № 9, 2310–2333 (2008). DOI: https://doi.org/10.1016/j.jde.2008.02.011

A. N. Carvalho, J. W. Cholewa, Strongly damped wave equations in $W^{1,p}_0(Ω)× L^p(Ω)$, Discrete and Contin. Dyn. Syst., 2007, 230–239 (2007).

T. Diagana, Almost periodic solutions to some second-order nonautonomous differential equations, Proc. Amer. Math. Soc., 140, № 1, 279–289 (2012). DOI: https://doi.org/10.1090/S0002-9939-2011-10970-5

E. Hernandez, K. Balachandran, N. Annapoorani, Existence results for a damped second order abstract functional differential equation with impulses, Math. Comput. Model., 50, № 11–12, 1583–1594 (2009). DOI: https://doi.org/10.1016/j.mcm.2009.09.007

P. Massatt, Limiting behavior for strongly damped nonlinear wave equations, J. Different. Equat., 48, № 3, 334–349 (1983). DOI: https://doi.org/10.1016/0022-0396(83)90098-0

P. Massatt, Asymptotic behavior for a strongly damped nonlinear wave equation, Nonlinear Phenomena in Mathematical Sciences, Acad. Press (1982), p. 663–670 . DOI: https://doi.org/10.1016/B978-0-12-434170-8.50083-2

G. F. Webb, Existence and asymptotic behavior for a strongly damped nonlinear wave equation, Canad. J. Math., 32, № 3, 631–643 (1980). DOI: https://doi.org/10.4153/CJM-1980-049-5

Q. Zhang, Global existence of $varepsilon$-regular solutions for the strongly damped wave equation, Electron. J. Qual. Theory Different. Equat., 62, 1–11 (2013). DOI: https://doi.org/10.14232/ejqtde.2013.1.62

A. Халанай, Д. Векслер, Качественная теория импульсных систем, Мир, Москва (1971).

A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, World Sci. Publ., Singapore (1995). DOI: https://doi.org/10.1142/2892

A. V. Dvornyk, V. I. Tkachenko, Almost periodic solutions for systems with delay and nonfixed times of impulsive actions, Ukrainian Math. J., 68, № 11, 1673–1693 (2017). DOI: https://doi.org/10.1007/s11253-017-1320-z

A. V. Dvornyk, O. O. Struk, V. I. Tkachenko, Almost periodic solutions of Lotka–Volterra systems with diffusion and impulse action, Ukrainian Math. J., 70, № 2, 197–216 (2018). DOI: https://doi.org/10.1007/s11253-018-1495-y

R. Hakl, M. Pinto, V. Tkachenko, S. Trofimchuk, Almost periodic evolution systems with impulse action at state-dependent moments, J. Math. Anal. and Appl., 446, № 1, 1030–1045 (2017). DOI: https://doi.org/10.1016/j.jmaa.2016.09.024

A. M. Samoilenko, S. I. Trofimchuk, Almost periodic impulsive systems, Different. Equat., 29, № 4, 684–691 (1993).

A. M. Samoilenko, S. I. Trofimchuk, Unbounded functions with almost periodic differences, Ukrainian Math. J., 43, № 10, 1306–1309 (1991). DOI: https://doi.org/10.1007/BF01061818

G. T. Stamov, Almost periodic solutions of impulsive differential equations, Lect. Notes Math., 2047, Springer, Heidelberg (2012). DOI: https://doi.org/10.1007/978-3-642-27546-3

V. Tkachenko, Almost periodic solutions of evolution differential equations with impulsive action, Mathematical Modelling and Applications in Nonlinear Dynamics, Springer, Cham (2016), p. 161–205. DOI: https://doi.org/10.1007/978-3-319-26630-5_7

A. V. Dvornyk, V. I. Tkachenko, On the stability of solutions of evolutionary equations with nonfixed times of pulse actions, J. Math. Sci., 220, № 4, 425–439 (2017). DOI: https://doi.org/10.1007/s10958-016-3193-3

D. Henry, Geometric theory of semilinear parabolic equations, Lect. Notes Math., 840, Springer, Berlin, Heidelberg (1981). DOI: https://doi.org/10.1007/BFb0089647

Published
05.02.2023
How to Cite
DvornykA. V., and TkachenkoV. I. “Almost Periodic Solutions of Damping Wave Equation With Impulsive Action ”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 75, no. 1, Feb. 2023, pp. 62 -71, doi:10.37863/umzh.v75i1.7400.
Section
Research articles