# Stable difference scheme for the numerical solution of the source identification problem for hyperbolic equations

### Abstract

UDC 517.9

We present a stable difference scheme of the second order of accuracy for a one-dimensional hyperbolic equation. The well-posedness of the difference scheme is established. Numerical results are presented.

### References

Yu. Ya. Belov, *Inverse problems for partial differential equations*, Inverse and Ill-posed Probl. Ser., VSP (2002).

G. Di Blasio, A. Lorenzi, *Identification problems for parabolic delay differential equations with measurement on the boundary*, J. Inverse and Ill-posed Probl., **15**, № 7, 709–734 (2007).

V. T. Borukhov, P. N. Vabishchevich, *Numerical solution of the inverse problem of reconstructing a distributed right-hand side of a parabolic equation*, Comput. Phys. Commun., **126**, № 1-2, 32–36 (2000).

Yu. A. Gryazin, M. V. Klibanov, T. R. Lucas, *Imaging the diffusion coefficient in a parabolic inverse problem in optical tomography*, Inverse Problems, **15**, № 2, 373 (1999).

V. Isakov, *Inverse problems for partial differential equations*, **127**, Springer, New York (2006).

N. I. Ivanchov, *On the determination of unknown source in the heat equation with nonlocal boundary conditions*, Ukr. Math. J., **47**, № 10, 1647–1652 (1995).

S. I. Kabanikhin, O. I. Krivorotko, *Identification of biological models described by systems of nonlinear differential equations*, J. Inverse and Ill-posed Probl., **23**, № 5, 519–527 (2015).

A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, *Methods for solving inverse problems in mathematical physics*, CRC Press (2000).

A. Ashyralyev, *On the problem of determining the parameter of a parabolic equation*, Ukr. Math. J., **62**, № 9, 1397–1408 (2011).

A. Ashyralyev, D. Agirseven, *On source identification problem for a delay parabolic equation*, Nonlinear Anal., Model. and Control, **19**, № 3, 335–349 (2014).

A. Ashyralyev, Ch. Ashyralyyev, *On the problem of determining the parameter of an elliptic equation in a Banach space*, Nonlinear Anal. Model. and Control, **19**, № 3, 350–366 (2014).

A. Ashyralyev, A. Erdogan, *Well-posedness of the right-hand side identification problem for a parabolic equation*, Ukr. Math. J., **66**, № 2 (2014).

A. U. Sazaklioglu, A. Ashyralyev, A. Said Erdogan, *Existence and uniqueness results for an inverse problem for semilinear parabolic equations*, Filomat, **31**, № 4, 1057–1064 (2017).

Ch. Ashyralyyev, *High order of accuracy difference schemes for the inverse elliptic problem with Dirichlet condition*, Boundary Value Problems, **2014**, № 1 (2014).

Ch. Ashyralyyev, *High order approximation of the inverse elliptic problem with Dirichlet–Neumann conditions*, Filomat, **28**, № 5, 947–962 (2014).

M. Ashyraliyeva, M. Ashyraliyev, *On a second order of accuracy stable difference scheme for the solution of a source identification problem for hyperbolic-parabolic equations*, AIP Conf. Proc., **1759**, № 1, AIP Publ. (2016).

M. Choulli, M. Yamamoto, *Generic well-posedness of a linear inverse parabolic problem with diffusion parameters*, J. Inverse and Ill-posed Probl., **7**, № 3, 241–254 (1999).

M. Dehghan, *An inverse problem of finding a source parameter in a semilinear parabolic equation*, Appl. Math. Model., **25**, № 9, 743–754 (2001).

Y. S. Eidelman, *The boundary value problem for differential equations with a parameter*, Differents. Uravn., **14**, № 7, 1335–1337 (1978).

Saitoh Saburou, Vu Kim Tuan, M. Yamamoto, *Reverse convolution inequalities and applications to inverse heat source problems*, J. Inequal. Pure and Appl. Math., **3**, № 5, 80 (2002).

A. A. Samarskii, P. N. Vabishchevich, *Numerical methods for solving inverse problems of mathematical physics*, **52**, Walter de Gruyter (2008).

F. A. Aliev et al., *A method to determine the coefficient of hydraulic resistance in different areas of pump-compressor pipes*, TWMS J. Pure and Appl. Math., **7**, № 2, 211–217 (2016).

F. A. Aliev et al., *Algorithm for calculating the parameters of formation of gas-liquid mixture in the shoe of gas lift well*, Appl. and Comput. Math., **15**, № 3, 370–376 (2016).

M. Grasselli, S. I. Kabanikhin, A. Lorenzi, *An inverse hyperbolic integrodifferential problem arising in geophysics. I*, Sib. Math. J., **33**, № 3, 415–426 (1992).

M. Grasselli, S. I. Kabanikhin, A. Lorenzi, *An inverse hyperbolic integrodifferential problem arising in geophysics II*, Nonlinear Anal., **15**, № 3, 283–298 (1990).

A. Ashyralyev, F. Emharab, *Source identification problems for hyperbolic differential and difference equations*, J. Inverse and Ill-posed Probl., **27**, № 3, 301–315 (2019).

A. Ashyralyev, P. E. Sobolevskii, *New difference schemes for partial differential equations, operator theory advances and applications*, Birkhäuser-Verlag etc. (2004).

Nguyen Thi Van Anh, Bui Thi Hai Yen, *Source identification problems for abstract semilinear nonlocal differential equations*, Inverse Probl. and Imaging, **16**, № 5, 1389–1428 (2022).

J. Janno, *Determination of time-dependent sources and parameters of nonlocal diffusion and wave equations from final data*, Fract. Calc. and Appl. Anal., **23**, № 6, 1678–1701 (2020).

*Ukrains’kyi Matematychnyi Zhurnal*, Vol. 76, no. 5, June 2024, pp. 647 -63, doi:10.3842/umzh.v76i5.7407.

Copyright (c) 2024 Allaberen Ashyralyev

This work is licensed under a Creative Commons Attribution 4.0 International License.