Finite A2-continued fractions in the problems of rational approximations of real numbers
DOI:
https://doi.org/10.37863/umzh.v75i6.7413Keywords:
A2-continued fraction, A2-representation of number, A2-binary numbers, cylinder, basic metric relation, convergent, normal property of number, scale-invariant set, rational approximationAbstract
UDC 511.7+517.5
We consider finite continued fractions whose elements are numbers 12 and 1 (the so-called A2-continued fractions): 1/a1+1/a2+…+1/an=[0;a1,a2,…,an], ai∈A2={12,1}. We study the structure of the set F of values of all these fractions and the problem of the number of representations of numbers from the segment [12;1] by fractions of this kind. It is proved that the set F⊂[13;2] has a scale-invariant structure and is dense in the segment [12;1]; the set of its elements that are greater than 1 is the set of terms of two decreasing sequences approaching 1, while the set of its elements that are smaller than 12 is the set of terms of two increasing sequences approaching 12. The fundamental difference between the representations of numbers with the help of finite and infinite A2-fractions is emphasized. The following hypothesis is formulated: every rational number of the segment [12;1] can be represented in the form of a finite A2-continued fraction.
References
S. Albeverio, Y. Kulyba, M. Pratsiovytyi, G. Torbin, On singularity and fine spectral structure of random continued fractions, Math. Nachr., 288, 1803–1813 (2015); DOI: 10.1002/mana.201500045. DOI: https://doi.org/10.1002/mana.201500045
A. Denjoy, Compláment à la notice publièe en 1934 sur les travaux scientifiques de M. Arnaud Denjoy, Hermann, Paris (1942).
S. O. Dmytrenko, D. V. Kyurchev, M. V. Prats'ovytyi, A2-continued fraction representation of real numbers and its geometry, Ukr. Math. J., 61, № 4, 541–555 (2009); https://doi.org/10.1007/s11253-009-0236-7. DOI: https://doi.org/10.1007/s11253-009-0236-7
W. B. Jones, W. J. Thron, Continued fractions: analytic theory and applications, Cambridge Univ. Press (1984). DOI: https://doi.org/10.1017/CBO9780511759550
M. Pratsiovytyi, D. Kyurchev, Properties of the distribution of the random variable defined by A2-continued fraction with independent elements, Random Oper. and Stoch. Equat., 17, № 1, 91–101 (2009). DOI: https://doi.org/10.1515/ROSE.2009.006
M. V. Pratsiovytyi, A. S. Chuikov, Continuous distributions whose functions preserve tails of A-continued fraction representation of numbers, Random Oper. and Stoch. Equat., 27, № 3, 199–206 (2019). DOI: https://doi.org/10.1515/rose-2019-2017
M. V. Pratsiovytyi, O. P. Makarchuk, A. S. Chuikov, Approximation and estimates in the periodic representation of real numbers of the closed interval [0,5;1] by A2-continues fractions, J. Numer. and Appl. Math., № 1(130), 71–83 (2019).
M. V. Pratsiovytyi, Ya. V. Goncharenko, N. V. Dyvliash, S. P. Ratushniak, Inversor of digits of Q∗2-representation of numbers, Mat. Stud., 55, № 1, 37–43 (2021). DOI: https://doi.org/10.30970/ms.55.1.37-43
M. V. Pratsiovytyi, Ya. V. Goncharenko, I. M. Lysenko, S. P. Ratushniak, Fractal functions of exponential type that is generated by the Q∗2-representation of argument, Mat. Stud., 56, № 2, 133–143 (2021). DOI: https://doi.org/10.30970/ms.56.2.133-143
M. V. Pratsiovytyi, Y. V. Goncharenko, I. M. Lysenko, S. P. Ratushniak, Continued A2-fractions and singular functions, Mat. Stud., 58, № 1, 3–12 (2022); DOI: 10.30970/ms.58.1. DOI: https://doi.org/10.30970/ms.58.1.3-12
M. V. Pratsiovytyi, Singularity of distributions of random variables given by distributions of elements of the corresponding continued fraction, Ukr. Mat. Zh., 48, № 8, 1086–1095 (1996). DOI: https://doi.org/10.1007/BF02383869
О. І. Бородін, Теорія чисел, Вища шк., Київ (1970).
М. Кац, Статистическая независимость в теории вероятностей, анализе и теории чисел, Изд-во иностр. лит., Москва (1963). 14. М. В. Працьовитий, Двосимвольні системи кодування дійсних чисел та їх застосування, Наук. думка, Київ (2022).
М. В. Працьовитий, Фрактальний підхід у дослідженнях сингулярних розподілів, НПУ ім. М. П. Драгоманова, Київ (1998).
М. В. Працьовитий, Т. В. Ісаєва, Фрактальні функції, пов'язані з Deltamu-зображенням чисел, Буковин. мат. журн., 3, № 3–4, 160–169 (2015).
М. В. Працьовитий, А. С. Чуйков, Неперервна ніде не монотонна функ-ція, означена в термінах нега-трійкових і ланцюгових A2-дробів, Зб. праць Ін-ту математики НАН України, 15, № 1, 147–161 (2018). DOI: https://doi.org/10.3738/1982.2278.2863