Estimation of the centroid Banach–Mazur distance between planar convex bodies
DOI:
https://doi.org/10.3842/umzh.v76i5.7428Keywords:
Banach-Mazur distance, centroid Banach-Mazur distance, convex body, centroid, affine-regular hexagonAbstract
UDC 514.18
We consider a version of the Banach–Mazur distance δcenBM(C,D) between two convex bodies C and D from Ed with an additional requirement that their centroids coincide. We prove that δcenBM(C,D)≤6917 for any two convex bodies C and D in E2.
References
G. Aubrun, S. J. Szarek, Alice and Bob meet Banach: The interface of asymptotic geometric analysis and quantum information theory, Math. Surveys and Monogr., 223, Amer. Math. Soc., Providence, RI (2017).
S. Banach, Théorie des opérations linéaires, Monogr. Mat., 1, Warszawa (1932); English translation: Theory of linear operations, North-Holland Math. Library, 38, North-Holland Publ. Co., Amsterdam (1987).
A. S. Besicovitch, Measure of asymmetry of convex curves, J. London Math. Soc., 23, 237–240 (1948). DOI: https://doi.org/10.1112/jlms/s1-23.3.237
T. Bonnesen, W. Fenchel, Theorie der konvexen K?rper, Springer, Berlin (1934); English translation: Theory of convex bodies, BBC Associates, Moscow, Idaho, USA (1987).
B. Gr?nbaum, Measures of symmetry of convex sets, Convexity, Proc. Symp. Pure Math., 7, Amer. Math. Soc., Providence, RI (1963), p.~233–270.
M. Lassak, Approximation of convex bodies by triangles, Proc. Amer. Math. Soc., 115, 207–210 (1992). DOI: https://doi.org/10.1090/S0002-9939-1992-1057956-1
M. Lassak, Banach–Mazur distance from the parallelogram to the affine-regular hexagon and other affine-regular even-gons, Results Math., 76, 76–82 (2021). DOI: https://doi.org/10.1007/s00025-021-01368-8
M. Lassak, Position of the centroid of a planar convex body, Aequat. Math. (to appear); arXiv:2202.01815v4.
M. Lassak, The centroid Banach–Mazur distance between the parallelogram and the triangle, J. Convex Anal. (to~appear); arXiv:2210.16150v1.
N. Tomczak-Jaegerman, Banach–Mazur distances and finite-dimensional operator ideals, Longman Sci. and Technical, Harlow and New York (1989).
G. Toth, Measures of symmetry for convex sets and stability, Universitext, Springer, Cham (2015). DOI: https://doi.org/10.1007/978-3-319-23733-6