Estimation of the centroid Banach–Mazur distance between planar convex bodies

Authors

  • Marek Lassak University of Science and Technology, Bydgoszcz, Poland

DOI:

https://doi.org/10.3842/umzh.v76i5.7428

Keywords:

Banach-Mazur distance, centroid Banach-Mazur distance, convex body, centroid, affine-regular hexagon

Abstract

UDC 514.18

We consider a version of the Banach–Mazur distance δcenBM(C,D) between two convex bodies C and D from Ed with an additional requirement that their centroids coincide. We prove that δcenBM(C,D)6917 for any two convex bodies C and D in E2.

References

G. Aubrun, S. J. Szarek, Alice and Bob meet Banach: The interface of asymptotic geometric analysis and quantum information theory, Math. Surveys and Monogr., 223, Amer. Math. Soc., Providence, RI (2017).

S. Banach, Théorie des opérations linéaires, Monogr. Mat., 1, Warszawa (1932); English translation: Theory of linear operations, North-Holland Math. Library, 38, North-Holland Publ. Co., Amsterdam (1987).

A. S. Besicovitch, Measure of asymmetry of convex curves, J. London Math. Soc., 23, 237–240 (1948). DOI: https://doi.org/10.1112/jlms/s1-23.3.237

T. Bonnesen, W. Fenchel, Theorie der konvexen K?rper, Springer, Berlin (1934); English translation: Theory of convex bodies, BBC Associates, Moscow, Idaho, USA (1987).

B. Gr?nbaum, Measures of symmetry of convex sets, Convexity, Proc. Symp. Pure Math., 7, Amer. Math. Soc., Providence, RI (1963), p.~233–270.

M. Lassak, Approximation of convex bodies by triangles, Proc. Amer. Math. Soc., 115, 207–210 (1992). DOI: https://doi.org/10.1090/S0002-9939-1992-1057956-1

M. Lassak, Banach–Mazur distance from the parallelogram to the affine-regular hexagon and other affine-regular even-gons, Results Math., 76, 76–82 (2021). DOI: https://doi.org/10.1007/s00025-021-01368-8

M. Lassak, Position of the centroid of a planar convex body, Aequat. Math. (to appear); arXiv:2202.01815v4.

M. Lassak, The centroid Banach–Mazur distance between the parallelogram and the triangle, J. Convex Anal. (to~appear); arXiv:2210.16150v1.

N. Tomczak-Jaegerman, Banach–Mazur distances and finite-dimensional operator ideals, Longman Sci. and Technical, Harlow and New York (1989).

G. Toth, Measures of symmetry for convex sets and stability, Universitext, Springer, Cham (2015). DOI: https://doi.org/10.1007/978-3-319-23733-6

Published

02.06.2024

Issue

Section

Short communications

How to Cite

Lassak, Marek. “Estimation of the Centroid Banach–Mazur Distance Between Planar Convex Bodies”. Ukrains’kyi Matematychnyi Zhurnal, vol. 76, no. 5, June 2024, pp. 776-81, https://doi.org/10.3842/umzh.v76i5.7428.