On Hölder continuity of solutions of the Beltrami equations

  • V. Ryazanov Institute of Applied Mathematics and Mechanics of the National Academy of Sciences of Ukraine, Slovyansk, Donetsk region; Cherkasy National University named after Bohdan Khmelnytskyi
  • R. Salimov Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv
  • E. Sevost’yanov Zhytomyr Ivan Franko State University; Institute of Applied Mathematics and Mechanics of the National Academy of Sciences of Ukraine, Slovyansk, Donetsk region.
Keywords: Beltrami equations, Holder continuity

Abstract

UDC 517.5

We consider the problem of local behavior of solutions of the Beltrami equations in arbitrary domains.  We have found sufficient conditions for the complex coefficient of the Beltrami equation guaranteeing the existence of its Hölder continuous solution in an arbitrary domain.  These results can be used in the boundary-value problems for the Beltrami equation, as well as in the hydromechanics of strongly anisotropic and inhomogeneous media.

References

V. Gutlyanskii, V. Ryazanov, U. Srebro, E. Yakubov, The Beltrami equation. A geometric approach, Dev. Math., 26, Springer, New York (2012). DOI: https://doi.org/10.1007/978-1-4614-3191-6

O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in modern mapping theory, Springer Monogr. Math., Springer, New York (2009).

V. Gutlyanskii, V. Ryazanov, U. Srebro, E. Yakubov, On recent advances in the degenerate Beltrami equations, Ukr. Mat. Visn., 7, № 4, 467–515 (2010).

U. Srebro, E. Yakubov, The Beltrami equation, Handb. Complex Anal. Geom. Funct. Theory, 2, 555–597 (2005). DOI: https://doi.org/10.1016/S1874-5709(05)80016-2

F. W. Gehring, Extremal length definitions for the conformal capacity of rings in space, Comment. Math. Helv., 36, 42–46 (1961).

F. W. Gehring, Extremal length definitions for the conformal capacity in space, Michigan Math. J., 9, 137–150 (1962). DOI: https://doi.org/10.1307/mmj/1028998672

F. W. Gehring, Quasiconformal mappings, Complex Analysis and its Applications (Lectures, Internat. Sem., Trieste, 1975), 2, 213–268 (1976).

J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lect. Notes Math., 229, Springer-Verlag, Berlin etc. (1971). DOI: https://doi.org/10.1007/BFb0061216

S. Saks, Theory of the integral, Dover Publ. Inc., New York (1964).

M. Vuorinen, Conformal geometry and quasiregular mappings, Lect. Notes Math., 1319, Springer-Verlag, Berlin etc. (1988). DOI: https://doi.org/10.1007/BFb0077904

B. Bojarski, V. Gutlyanskii, O. Martio, V. Ryazanov, Infinitesimal geometry of quasiconformal and bi-Lipschitz mappings in the plane, EMS Tracts Math., 19, Eur. Math. Soc., Zürich (2013). DOI: https://doi.org/10.4171/122

Published
10.05.2023
How to Cite
RyazanovV., SalimovR., and Sevost’yanovE. “On Hölder Continuity of Solutions of the Beltrami Equations”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 75, no. 4, May 2023, pp. 511 -22, doi:10.37863/umzh.v75i4.7464.
Section
Research articles