Boundary-value problems for weakly singular Hammerstein-type integral equations

  • O. Boichuk Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv
  • V. Feruk Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv
Keywords: Boundary-value problem, weakly singular integral equation, pseudoinverse Moore-Penrose matrix

Abstract

UDC517.9

We consider the problem of existence of the solution of weakly nonlinear boundary-value problem for the Hammerstein-type integral equation with  unbounded kernel, which turns, for $\varepsilon=0,$  into one of solutions of the generating problem. The necessary and sufficient conditions for the existence of this solution are obtained and the iterative procedure for its construction is proposed.

References

P. L. Auer, C. S. Gardner, Note on singular integral equations of the Kirkwood–Riseman type, J. Chem. Phys., 23, 1545–1546 (1955); https://doi.org/10.1063/1.1742352. DOI: https://doi.org/10.1063/1.1742352

N. Levinson, A nonlinear Volterra equation arising in the theory of superfluidity, J. Math. Anal. and Appl., 1, № 1, 1–11 (1960); https://doi.org/10.1016/0022-247X(60)90028-7. DOI: https://doi.org/10.1016/0022-247X(60)90028-7

W. E. Olmstead, A nonlinear integral equation associated with gas absorption in a liquid, Z. Angew. Math. und Phys., 28, № 3, 513–523 (1977); https://doi.org/10.1007/BF01601630. DOI: https://doi.org/10.1007/BF01601630

A. N. Kochubei, General fractional calculus, evolution equations, and renewal processes, Integral Equations Operator Theory, 71, 583–600 (2011); https://doi.org/10.1007/s00020-011-1918-8. DOI: https://doi.org/10.1007/s00020-011-1918-8

В. Б. Василик, І. П. Гаврилюк, В. Л. Макаров, Експоненціально збіжний метод наближення для рівняння з дробовою похідною і необмеженим операторним коефіцієнтом у банаховому просторі, Укр. мат. журн., 74, № 2, 151–163 (2022); English translation: Ukr. Math. J., 74, № 2, 171–185 (2022); https://doi.org/10.1007/s11253-022-02056-8. DOI: https://doi.org/10.37863/umzh.v74i2.6984

G. R. Richter, On weakly singular Fredholm integral equations with displacement kernels, J. Math. Anal. and Appl., 55, № 1, 32–42 (1976); https://doi.org/10.1016/0022-247X(76)90275-4. DOI: https://doi.org/10.1016/0022-247X(76)90275-4

C. Schneider, Regularity of the solution to a class of weakly singular Fredholm integral equations of the second kind, Integral Equations Operator Theory, 2, № 1, 62–68 (1979); https://doi.org/10.1007/BF01729361. DOI: https://doi.org/10.1007/BF01729361

H. Kaneko, R. D. Noren, Y. Xu, Numerical solutions for weakly singular Hammerstein equations and their superconvergence, J. Integral Equations Appl., 4, № 3, 391–407 (1992); https://doi.org/10.1216/jiea/1181075699. DOI: https://doi.org/10.1216/jiea/1181075699

E. Vainikko, G. Vainikko, A spline product quasi-interpolation method for weakly singular Fredholm integral equations, SIAM J. Numer. Anal., 46, № 4, 1799–1820 (2008); https://doi.org/10.1137/070693308. DOI: https://doi.org/10.1137/070693308

J. Shen, C. Sheng, Z. Wang, Generalized Jacobi spectral-Galerkin method for nonlinear Volterra integral equations with weakly singular kernels, J. Math. Study, 48, № 4, 315–329 (2015); https://doi.org/10.4208/jms.v48n4.15.01. DOI: https://doi.org/10.4208/jms.v48n4.15.01

Y. Yang, Y. Huang, Spectral Jacobi–Galerkin methods and iterated methods for Fredholm integral equations of the second kind with weakly singular kernel, Discrete and Contin. Dyn. Syst. Ser. S, 12, № 3, 685–702 (2019); https://doi.org/10.3934/dcdss.2019043. DOI: https://doi.org/10.3934/dcdss.2019043

L. Grammont, R. P. Kulkarni, P. B. Vasconcelos, Fast and accurate solvers for weakly singular integral equations, Numer. Algorithms,1–26 (2022); https://doi.org/10.1007/s11075-022-01376-x. DOI: https://doi.org/10.1007/s11075-022-01376-x

L. Fermo, D. Occorsio, Weakly singular linear Volterra integral equations: a Nyström method in weighted spaces of continuous functions, J. Comput. and Appl. Math., 406, Paper 114001 (2022); https://doi.org/10.1016/ j.cam.2021.114001. DOI: https://doi.org/10.1016/j.cam.2021.114001

О. А. Бойчук, В. А. Ферук, Лінійні крайові задачі для слабкосингулярних інтегральних рівнянь, Нелінійні коливання, 22, № 1, 27–35 (2019); English translation: J. Math. Sci., 247, 248–257 (2020); https://doi.org/10.1007/ s10958-020-04800-6.

O. A. Boichuk, V. A. Feruk, Boundary-value problems for weakly singular integral equations, Discrete and Contin. Dyn. Syst. Ser. B, 27, № 3, 1379–1395 (2022); https://doi.org/10.3934/dcdsb.2021094. DOI: https://doi.org/10.3934/dcdsb.2021094

O. A. Boichuk, V. A. Feruk, Fredholm boundary-value problem for the system of fractional differential equations, Nonlinear Dyn., 111, 7459–7468 (2023); https://doi.org/10.1007/s11071-022-08218-4. DOI: https://doi.org/10.1007/s11071-022-08218-4

A. N. Sharkovsky, Y. L. Maistrenko, E. Y. Romanenko, Difference equations and their applications, Springer Sci.+Business Media (2012).

A. A. Boichuk, A. M. Samoilenko, Generalized inverse operators and Fredholm boundary-value problems, 2th ed., De Gruyter, Berlin; Boston (2016); https://doi.org/10.1515/9783110378443. DOI: https://doi.org/10.1515/9783110378443

А. А. Бойчук, В. Ф. Журавлев, А. М. Самойленко, Нормально разрешимые краевые задачи, Наук. думка, Киев (2019).

О. А. Бойчук, В. Л. Макаров, В. А. Ферук, Критерій розв’язності резонансних рівнянь та побудова їх розв’язків, Укр. мат. журн., 71, № 10, 1321–1330 (2019); English translation: Ukr. Math. J., 71, № 10, 1510–1521 (2020); https://doi.org/10.1007/s11253-020-01728-7. DOI: https://doi.org/10.1007/s11253-020-01728-7

Л. А. Власенко, А. Г. Руткас, А. О. Чикрій, Функціонально-диференціальні ігри з неатомарним різницевим оператором, Укр. мат. журн., 74, № 2, 164–177 (2022); English translation: Ukr. Math. J., 74, № 2, 186–202 (2022); https://doi.org/10.1007/s11253-022-02057-7. DOI: https://doi.org/10.37863/umzh.v74i2.6895

Н. О Козлова, Нетерові крайові задачі для інтегральних та інтегро-диференціальних рівнянь, Дис. ... канд. фiз.-мат. наук, Київ (2017).

A. A. Boichuk, N. A. Kozlova, V. A. Feruk, Weakly nonlinear integral equations of the Hammerstein type, Nonlinear Dyn. and Syst. Theory, 19, № 2, 289–301 (2019).

С. Г. Михлин, Лекции по линейным интегральным уравнениям, Физматгиз, Москва (1959).

Published
02.02.2024
How to Cite
Boichuk, O., and V. Feruk. “Boundary-Value Problems for Weakly Singular Hammerstein-Type Integral Equations”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 1, Feb. 2024, pp. 62 -71, doi:10.3842/umzh.v76i1.7487.
Section
Research articles