Conditions under which the convergence of a sequence or its certain subsequences follows from the summability by deferred weighted means

Keywords: Summability by deferred weighted means, Tauberian conditions, deferred slow decrease and oscillation, Landau and Hardy type conditions, ordered linear spaces

Abstract

UDC 517.5

Let $(u_k)$ be a sequence of real or complex numbers. First, we consider a real sequence $(u_k)$ and formulate one-sided Tauberian conditions, which are necessary and sufficient for the  convergence of certain subsequences of $(u_k)$ to follow from its  deferred weighted summability. These conditions are satisfied if $(u_k)$ is deferred slowly decreasing or if $(u_k)$ obeys a Landau-type Tauberian condition. Second, we consider a complex sequence $(u_k)$ and present a two-sided Tauberian condition which is necessary and sufficient in order that the convergence of certain subsequences of $(u_k)$ follow from its deferred weighted summability.  This condition is satisfied either if $(u_k)$ is deferred slowly oscillating or if $(u_k)$ obeys a Hardy-type Tauberian condition. Finally, we extend these results to sequences in ordered linear spaces over the real numbers.

References

A. Aasma, H. Dutta, P. N. Natarajan, An introductory course in summability theory, John Wiley & Sons, Hoboken, NJ (2017). DOI: https://doi.org/10.1002/9781119397786

R. P. Agnew, On deferred Cesàro means, Ann. Math., 33, 413–421 (1932). DOI: https://doi.org/10.2307/1968524

M. Çınar, E. Yılmaz, M. Et, Deferred statistical convergence on time scales, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci., 22, 301–307 (2021).

S. Ercan, On deferred Cesàro mean in paranormed spaces, Korean J. Math., 29, 169–177 (2021). DOI: https://doi.org/10.22541/au.159196563.35157737

G. H. Hardy, Theorems relating to the summability and convergence of slowly oscillating series, Proc. London Math. Soc., 8, 301–320 (1910). DOI: https://doi.org/10.1112/plms/s2-8.1.301

B. B. Jena, S. K. Paikray, U. Misra, Statistical deferred Cesàro summability and its applications to approximation theorems, Filomat, 32, 2307–2319 (2018). DOI: https://doi.org/10.2298/FIL1806307J

B. B. Jena, S. K. Paikray, H. Dutta, Statistically Riemann integrable and summable sequence of functions via deferred Cesàro mean, Bull. Iran. Math. Soc., 48, 1293–1309 (2022). DOI: https://doi.org/10.1007/s41980-021-00578-8

B. B. Jena, S. K. Paikray, Statistical convergence of martingale difference sequence via deferred weighted mean and Korovkin-type theorems, Miskolc Math. Notes, 22, 273–286 (2021). DOI: https://doi.org/10.18514/MMN.2021.3407

B. B. Jena, S. K. Paikray, M. Mursaleen, On the degree of approximation of Fourier series based on a certain class of product deferred summability means, J. Inequal. and Appl., 2023, Article 18 (2023). DOI: https://doi.org/10.1186/s13660-023-02927-z

J. Karamata, Sur un mode de croissance régulière, Théorèmes fondamentaux, Bull. Soc. Math. France, 61, 55–62 (1933). DOI: https://doi.org/10.24033/bsmf.1196

V. A. Khan, B. Hazarika, I. A. Khan, U. Tuba, $I$-deferred strongly Cesàro summable and $mu$-deferred $I$-statistically convergent sequence spaces, Ric. Mat. (2021); https://doi.org/10.1007/s11587-021-00619-8. DOI: https://doi.org/10.1007/s11587-021-00619-8

V. A. Khan, B. Hazarika, I. A. Khan, Z. Rahman, A study on $I$-deferred strongly Cesàro summable and $mu$-deferred $I$-statistical convergence for complex uncertain sequences, Filomat, 36, 7001–7020 (2022). DOI: https://doi.org/10.2298/FIL2220001K

J. Korevaar, Tauberian theory: a century of developments, Springer-Verlag, Berlin (2004). DOI: https://doi.org/10.1007/978-3-662-10225-1

M. Küçükaslan, M. Yılmaztürk, On deferred statistical convergence of sequences, Kyungpook Math. J., 56, 357–366 (2016). DOI: https://doi.org/10.5666/KMJ.2016.56.2.357

E. Landau, Über die Bedeutung einer neuerer Grenzwertss der Herren Hardy und Axel, Prac. Mat.-Fiz., 21, 97–177 (1910).

F. Móricz, Necessary and sufficient Tauberian conditions, under which convergence follows from summability $(C,1)$, Bull. London Math. Soc., 26, 288–294 (1994). DOI: https://doi.org/10.1112/blms/26.3.288

F. Móricz, B. E. Rhoades, Necessary and sufficient Tauberian conditions for certain weighted mean methods of summability II, Acta Math. Hungar., 102, 279–285 (2004). DOI: https://doi.org/10.1023/B:AMHU.0000024678.80514.94

F. M'oricz, Necessary and sufficient Tauberian conditions for the logarithmic summability of functions and sequences, Stud. Math., 219, 109–121 (2013). DOI: https://doi.org/10.4064/sm219-2-2

M. Mursaleen, F. Başar, Sequence spaces: topics in modern summability theory, CRC Press, Boca Raton, FL (2020). DOI: https://doi.org/10.1201/9781003015116

I. J. Maddox, A Tauberian theorem for ordered spaces, Analysis, 9, 297–302 (1989). DOI: https://doi.org/10.1524/anly.1989.9.3.297

K. Raj, S. A. Mohiuddine, S. Jasrotia, Characterization of summing operators in multiplier spaces of deferred Nörlund summability, Positivity, 27, Article 9 (2023). DOI: https://doi.org/10.1007/s11117-022-00961-7

R. Schmidt, Über divergente Folgen und lineare Mittelbildungen, Math. Z., 22, 89–152 (1925). DOI: https://doi.org/10.1007/BF01479600

K. Saini, K. Raj, M. Mursaleen, Deferred Cesàro and deferred Euler equistatistical convergence and its applications to Korovkin-type approximation theorem, Int. J. Gen. Syst., 50, 567–579 (2021). DOI: https://doi.org/10.1080/03081079.2021.1942867

R. Savaş, Multidimensional strongly deferred invariant convergence, Numer. Funct. Anal. and Optim., 42, 1323–1333 (2021). DOI: https://doi.org/10.1080/01630563.2021.1959343

S. A. Sezer, İ. Çanak, H. Dutta, Necessary and sufficient Tauberian conditions under which convergence follows from deferred Cesàro summability, Filomat, 36, 921–931 (2022). DOI: https://doi.org/10.2298/FIL2203921S

S. A. Sezer, Z. Önder, İ. Çanak, Statistical deferred Cesàro summability and its applications to Tauberian theory, Bull. Iran. Math. Soc., 49, № 2, Article 19 (2023). DOI: https://doi.org/10.1007/s41980-023-00770-y

H. M. Srivastava, B. B. Jena, S. K. Paikray, U. Misra, A certain class of weighted statistical convergence and associated Korovkin-type approximation theorems involving trigonometric functions, Math. Methods Appl. Sci., 41, 671–683 (2018). DOI: https://doi.org/10.1002/mma.4636

H. M. Srivastava, B. B. Jena, S. K. Paikray, Statistical probability convergence via the deferred Nörlund mean and its applications to approximation theorems, Rev. R. Acad. Cienc. Exactas Fıs. Nat. Ser. A Mat. RACSAM, 114, Article~144 (2020). DOI: https://doi.org/10.1007/s13398-020-00875-7

Published
04.08.2024
How to Cite
Sezer, S. A., and İbrahim Çanak. “Conditions under Which the Convergence of a Sequence or Its Certain Subsequences Follows from the Summability by Deferred Weighted Means”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 7, Aug. 2024, pp. 1041 -51, doi:10.3842/umzh.v76i7.7507.
Section
Research articles