On error bounds for Milne's formula in conformable fractional operators

  • Fatih Hezenci Department of Mathematics, Faculty of Science and Arts, Duzce University, Turkey https://orcid.org/0000-0003-1008-5856
  • Hüseyin Budak Department of Mathematics, Faculty of Science and Arts, Duzce University, Turkey
Keywords: quadrature formulae, fractional conformable integrals, open Newton-Cotes formulas, Milne's formula

Abstract

UDC 517.9

Milne's formula is a mathematical expression used to approximate the value of a definite integral. The formula is particularly useful for problems encountered in physics, engineering, and various other scientific disciplines. We establish an equality for conformable fractional integrals.  With the help of this equality, we obtain error bounds for one of the open Newton–Cotes formulas, namely, Milne's formula for the case of differentiable convex functions within the framework of fractional and classical calculus. Furthermore, we provide our results by using special cases of the obtained theorems.

References

T. Abdeljawad, On conformable fractional calculus, J. Comput. and Appl. Math., 279, 57–66 (2015). DOI: https://doi.org/10.1016/j.cam.2014.10.016

M. Alomari, New error estimations for the Milne's quadrature formula in terms of at most first derivatives, Konuralp J. Math., 1, № 1, 17–23 (2013).

A. D. Booth, Numerical methods, 3rd ed., Butterworths, California (1966).

M. A. Ali, Z. Zhang, M. Fečkan, On some error bounds for Milne's formula in fractional calculus, Mathematics, 11, № 1 (2023); https://doi.org/10.3390/math11010146. DOI: https://doi.org/10.3390/math11010146

H. Budak, P. Kösem, H. Kara, On new Milne-type inequalities for fractional integrals, J. Inequal. and Appl., 2023, № 10 (2023). DOI: https://doi.org/10.1186/s13660-023-02921-5

H. Budak, F. Hezenci, H. Kara, On parametrized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integral, Math. Methods Appl. Sci., 44, № 30, 12522–12536 (2021). DOI: https://doi.org/10.1002/mma.7558

H. Budak, F. Hezenci, H. Kara, On generalized Ostrowski, Simpson and trapezoidal type inequalities for coordinated convex functions via generalized fractional integrals, Adv. Difference Equat., 2021, 1–32 (2021). DOI: https://doi.org/10.1186/s13662-021-03463-0

P. J. Davis, P. Rabinowitz, Methods of numerical integration, Academic Press, New York etc. (1975).

M. Djenaoui, B. Meftah, Milne type inequalities for differentiable s-convex functions, Honam Math. J., 44, № 3, 325–338 (2022).

S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpson's inequality and applications, J. Inequal. and Appl., 5, 533–579 (2000). DOI: https://doi.org/10.1155/S102558340000031X

S. Erden, S. Iftikhar, P. Kumam, M. U. Awan, Some Newton's like inequalities with applications, Rev. R. Acad. Cienc. Exactas. Fis. Nat. Ser. A, 114, № 4, 1–13 (2020). DOI: https://doi.org/10.1007/s13398-020-00926-z

S. Gao, W. Shi, On new inequalities of Newton's type for functions whose second derivatives absolute values are convex, Int. J. Pure and Appl. Math., 74, № 1, 33–41 (2012).

F. Hezenci, H. Budak, H. Kara, New version of fractional Simpson type inequalities for twice differentiable functions, Adv. Difference Equat., 2021, Article 460 (2021). DOI: https://doi.org/10.1186/s13662-021-03615-2

F. Hezenci, H. Budak, P. Kosem, On new version of Newton's inequalities for Riemann–Liouville fractional integrals, Rocky Mountain J. Math. (to appear).

F. Hezenci, H. Budak, Some perturbed Newton type inequalities for Riemann–Liouville fractional integrals, Mountain J. Math. (to appear).

S. Iftikhar, P. Kumam, S. Erden, Newton's-type integral inequalities via local fractional integrals, Fractals, 28, № 3, Article 2050037 (2020). DOI: https://doi.org/10.1142/S0218348X20500371

S. Iftikhar, S. Erden, P. Kumam, M. U. Awan, Local fractional Newton's inequalities involving generalized harmonic convex functions, Adv. Difference Equat., 2020, № 1, 1–14 (2020). DOI: https://doi.org/10.1186/s13662-020-02637-6

F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. and Appl., 10, № 5, 2607–2619 (2017). DOI: https://doi.org/10.22436/jnsa.010.05.27

F. Jarad, E. Uğurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Difference Equat., 2017, Article 247 (2017). DOI: https://doi.org/10.1186/s13662-017-1306-z

A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math. Stud., 204, Elsevier Sci. B.V., Amsterdam (2006).

M. A. Noor, K. I. Noor, S. Iftikhar, Some Newton's type inequalities for harmonic convex functions, J. Adv. Math. Stud., 9, № 1, 7–16 (2016).

K. Shah, T. Abdeljawad, F. Jarad, Q. Al-Mdallal, On nonlinear conformable fractional order dynamical system via differential transform method, CMES Comput. Model. Eng. Sci., 136, № 2, 1457–1472 (2023). DOI: https://doi.org/10.32604/cmes.2023.021523

M. Sher, A. Khan, K. Shah, T. Abdeljawad, Existence and stability theory of pantograph conformable fractional differential problem, Thermal Sci., 27, Spec. Issue 1, 237–244 (2023). DOI: https://doi.org/10.2298/TSCI23S1237S

M. Sher, K. Shah, M. Sarwar, M. A. Alqudah, T. Abdeljawad, Mathematical analysis of fractional order alcoholism model, Alexandria Eng. J., 78, 281–291 (2023). DOI: https://doi.org/10.1016/j.aej.2023.07.010

T. Sitthiwirattham, K. Nonlaopon, M. A. Ali, H. Budak, Riemann–Liouville fractional Newton's type inequalities for differentiable convex functions, Fractal and Fract., 6, № 3, Article 175 (2022). DOI: https://doi.org/10.3390/fractalfract6030175

Published
04.08.2024
How to Cite
Hezenci, F., and H. Budak. “On Error Bounds for Milne’s Formula in Conformable Fractional Operators”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 7, Aug. 2024, pp. 1069 -85, doi:10.3842/umzh.v76i7.7513.
Section
Research articles