Representation of solutions of the Lamé–Navier system by endomorphisms on quaternions

  • Doan Cong Dinh School of Applied Mathematics and Informatics, Hanoi University of Science and Technology, Vietnam
Keywords: Endomorphisms on Quaternions, Lamé-Navier system,\break Quaternion analysis, integral representation

Abstract

UDC 517.54

Solutions of the Lamé–Navier system in $\mathbb{R}^3$ are given in real analysis and in quatenionic analysis in different forms. We introduce a new method of using endomorphisms on quaternions with an aim to represent these solutions.

References

R. Abreu-Blaya, J. Bory-Reyes, M. A. Herrera-Peláez, J. M. Sigarreta, Integral representation formulas related to the Lamé–Navier system, Acta Math. Sin. (Engl. Ser.), 36, 1341–1356 (2020). DOI: https://doi.org/10.1007/s10114-020-9332-2

S. Bock, K. Gürlebeck, On a spatial generalization of the Kolosov–Muskhelishvili formulae, Math. Methods Appl. Sci., 32, 223–240 (2009). DOI: https://doi.org/10.1002/mma.1033

S. Bock, On monogenic series expansions with applications to linear elasticity, Adv. Appl. Clifford Algebras, 24, 931–943 (2014). DOI: https://doi.org/10.1007/s00006-014-0490-0

S. Bock, K. Gürlebeck, D. Legatiuk, H. M. Nguyen, Ψ-hyperholomorphic functions and a Kolosov–Muskhelishvili formula, Math. Methods Appl. Sci., 38, № 18, 5114–5123 (2015). DOI: https://doi.org/10.1002/mma.3431

S. Bock, K. Gürlebeck, On a polynomial basis generated from the generalized Kolosov–Muskhelishvili formulae, Adv. Appl. Clifford Algebras, 19, 191–209 (2009). DOI: https://doi.org/10.1007/s00006-009-0156-5

F. Brackx, R. Delanghe, F. Sommen, Clifford analysis, vol. 76, Research Notes in Mathematics, Pitman (Advanced Publishing Program), Boston, MA (1982).

D. C. Dinh, Applications of endomorphisms on Clifford algebras to (α,β)-monogenic functions and isotonic functions, Complex Anal. and Oper. Theory, 17, 21 (2023). DOI: https://doi.org/10.1007/s11785-022-01326-4

D. C. Dinh, Somigliana formula in quaternion analysis, Mech. Research Commun., 126, Article 104018 (2022). DOI: https://doi.org/10.1016/j.mechrescom.2022.104018

Y. Grigor'ev, Three-dimensional analogue of Kolosov–Muskhelishvili formulae, in: Bernstein S., Kähler U., Sabadini I., Sommen F. (eds.) Modern Trends in Hypercomplex Analysis, Trends Math., Birkhäuser, Cham (2016), 203–215. DOI: https://doi.org/10.1007/978-3-319-42529-0_11

K. Gürlebeck, K. Habetha, W. Spröβig, Holomorphic functions in the plane and $n$-dimensional space, Birkhäuser, Basel (2008).

K. Gürlebeck, K. Habetha, W. Spröβig, Application of holomorphic functions in two and higher dimensions, Springer Internat. Publ., Switzerland (2016). DOI: https://doi.org/10.1007/978-3-0348-0964-1

K. Gürlebeck, H. M. Nguyen, Ψ-hyperholomorphic functions and an application to elasticity problems, AIP Conf. Proc., 1648, № 1, Article 440005 (2015). DOI: https://doi.org/10.1063/1.4912656

K. Gürlebeck, W. Spröβig, Quaternionic analysis and elliptic boundary value problems, Internat. Ser. Numer. Math., vol. 89, Birkhäuser-Verlag, Basel (1990). DOI: https://doi.org/10.1007/978-3-0348-7295-9

M. Laoues, Linear operators in Clifford algebras, Lett. Math. Phys., 23, 325–331 (1991). DOI: https://doi.org/10.1007/BF00398830

A. Moreno García, T. Moreno García, R. Abreu Blaya, J. Bory Reyes, Inframonogenic functions and their applications in $3$-dimensional elasticity theory, Math. Methods Appl. Sci., 41, № 10, 3622–3631 (2018). DOI: https://doi.org/10.1002/mma.4850

N. I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity, Springer (1977). DOI: https://doi.org/10.1007/978-94-017-3034-1

W. Waterhouse, Linear operators in Clifford algebras, Lett. Math. Phys., 30, 187–188 (1994). DOI: https://doi.org/10.1007/BF00805851

D. Weisz-Patrault, S. Bock, K. Gürlebeck, Three-dimensional elasticity based on quaternion-valued potentials, Int. J. Solids Struct., 51, № 19, 3422–3430 (2014). DOI: https://doi.org/10.1016/j.ijsolstr.2014.06.002

Published
04.08.2024
How to Cite
Dinh, D. C. “Representation of Solutions of the Lamé–Navier System by Endomorphisms on Quaternions”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 7, Aug. 2024, pp. 980 -85, doi:10.3842/umzh.v76i7.7518.
Section
Research articles