Representation of solutions of the Lamé–Navier system by endomorphisms on quaternions
Abstract
UDC 517.54
Solutions of the Lamé–Navier system in $\mathbb{R}^3$ are given in real analysis and in quatenionic analysis in different forms. We introduce a new method of using endomorphisms on quaternions with an aim to represent these solutions.
References
R. Abreu-Blaya, J. Bory-Reyes, M. A. Herrera-Peláez, J. M. Sigarreta, Integral representation formulas related to the Lamé–Navier system, Acta Math. Sin. (Engl. Ser.), 36, 1341–1356 (2020). DOI: https://doi.org/10.1007/s10114-020-9332-2
S. Bock, K. Gürlebeck, On a spatial generalization of the Kolosov–Muskhelishvili formulae, Math. Methods Appl. Sci., 32, 223–240 (2009). DOI: https://doi.org/10.1002/mma.1033
S. Bock, On monogenic series expansions with applications to linear elasticity, Adv. Appl. Clifford Algebras, 24, 931–943 (2014). DOI: https://doi.org/10.1007/s00006-014-0490-0
S. Bock, K. Gürlebeck, D. Legatiuk, H. M. Nguyen, Ψ-hyperholomorphic functions and a Kolosov–Muskhelishvili formula, Math. Methods Appl. Sci., 38, № 18, 5114–5123 (2015). DOI: https://doi.org/10.1002/mma.3431
S. Bock, K. Gürlebeck, On a polynomial basis generated from the generalized Kolosov–Muskhelishvili formulae, Adv. Appl. Clifford Algebras, 19, 191–209 (2009). DOI: https://doi.org/10.1007/s00006-009-0156-5
F. Brackx, R. Delanghe, F. Sommen, Clifford analysis, vol. 76, Research Notes in Mathematics, Pitman (Advanced Publishing Program), Boston, MA (1982).
D. C. Dinh, Applications of endomorphisms on Clifford algebras to (α,β)-monogenic functions and isotonic functions, Complex Anal. and Oper. Theory, 17, 21 (2023). DOI: https://doi.org/10.1007/s11785-022-01326-4
D. C. Dinh, Somigliana formula in quaternion analysis, Mech. Research Commun., 126, Article 104018 (2022). DOI: https://doi.org/10.1016/j.mechrescom.2022.104018
Y. Grigor'ev, Three-dimensional analogue of Kolosov–Muskhelishvili formulae, in: Bernstein S., Kähler U., Sabadini I., Sommen F. (eds.) Modern Trends in Hypercomplex Analysis, Trends Math., Birkhäuser, Cham (2016), 203–215. DOI: https://doi.org/10.1007/978-3-319-42529-0_11
K. Gürlebeck, K. Habetha, W. Spröβig, Holomorphic functions in the plane and $n$-dimensional space, Birkhäuser, Basel (2008).
K. Gürlebeck, K. Habetha, W. Spröβig, Application of holomorphic functions in two and higher dimensions, Springer Internat. Publ., Switzerland (2016). DOI: https://doi.org/10.1007/978-3-0348-0964-1
K. Gürlebeck, H. M. Nguyen, Ψ-hyperholomorphic functions and an application to elasticity problems, AIP Conf. Proc., 1648, № 1, Article 440005 (2015). DOI: https://doi.org/10.1063/1.4912656
K. Gürlebeck, W. Spröβig, Quaternionic analysis and elliptic boundary value problems, Internat. Ser. Numer. Math., vol. 89, Birkhäuser-Verlag, Basel (1990). DOI: https://doi.org/10.1007/978-3-0348-7295-9
M. Laoues, Linear operators in Clifford algebras, Lett. Math. Phys., 23, 325–331 (1991). DOI: https://doi.org/10.1007/BF00398830
A. Moreno García, T. Moreno García, R. Abreu Blaya, J. Bory Reyes, Inframonogenic functions and their applications in $3$-dimensional elasticity theory, Math. Methods Appl. Sci., 41, № 10, 3622–3631 (2018). DOI: https://doi.org/10.1002/mma.4850
N. I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity, Springer (1977). DOI: https://doi.org/10.1007/978-94-017-3034-1
W. Waterhouse, Linear operators in Clifford algebras, Lett. Math. Phys., 30, 187–188 (1994). DOI: https://doi.org/10.1007/BF00805851
D. Weisz-Patrault, S. Bock, K. Gürlebeck, Three-dimensional elasticity based on quaternion-valued potentials, Int. J. Solids Struct., 51, № 19, 3422–3430 (2014). DOI: https://doi.org/10.1016/j.ijsolstr.2014.06.002
Copyright (c) 2024 Cong Dinh Doan
This work is licensed under a Creative Commons Attribution 4.0 International License.