Centralizers of linear and locally nilpotent derivations

Authors

  • L. Bedratyuk Khmelnitsky University
  • A. Petravchuk Kyiv National University named after Taras Shevchenko
  • Ie. Chapovskyi Kyiv National University named after Taras Shevchenko

DOI:

https://doi.org/10.3842/umzh.v75i8.7529

Keywords:

Lie algebra, locally nilpotent differentiation, basic Weitzenbeck differentiation, centralizer, kernel of differentiation

Abstract

UDC 512.715, 512.554.31

Let K be an algebraically closed field of characteristic zero, K[x1,,xn] be the polynomial algebra and Wn(K) be the Lie algebra of all K-derivations on K[x1,,xn]. For any derivation D with linear components,  we describe the centralizer of D in Wn(K), and  propose an algorithm for finding the generators of this centralizer regarded as a module over the ring of constants of the derivation D in the case where D is a basic Weitzenboeck derivation. In a more general case where a finitely generated integral domain A over the field K is considered instead of the polynomial algebra K[x1,,xn] and D is a locally nilpotent derivation on A, we prove that the centralizer CDerA(D) of D in the Lie algebra DerA of all K-differentiations on A is a ``large'' subalgebra of DerA. Specifically, the rank of CDerA(D) over A is equal to the transcendence degree of the field of fractions Frac(A) over the field~K.

References

L. P. Bedratyuk, Kernels of derivations of polynomial rings and Casimir elements, Ukr. Math. J., 62, № 4, 495–517 (2010). DOI: https://doi.org/10.1007/s11253-010-0367-x

Y. Chapovskyi, D. Efimov, A. Petravchuk, Centralizers of elements in Lie algebras of vector fields with polynomial coefficients, Proc. Int. Geom. Cent., 14, № 4, 257–270 (2021). DOI: https://doi.org/10.15673/tmgc.v14i4.2153

D. R. Finston, S. Walcher, Centralizers of locally nilpotent derivations, J. Pure and Appl. Algebra, 120, № 1, 39–49 (1997). DOI: https://doi.org/10.1016/S0022-4049(96)00064-3

G. Freudenburg, Algebraic theory of locally nilpotent derivations, Encyclopedia Math. Sci., vol. 136, Springer, Berlin (2006).

F. R. Gantmacher, The theory of matrices, vols. 1, 2, Chelsea Publ. Co., New York (1959).

J. E. Humphreys, Introduction to Lie algebras and representation theory, Grad. Texts in Math., vol. 9, Springer, New York (1972). DOI: https://doi.org/10.1007/978-1-4612-6398-2

M. Miyanishi, Normal affine subalgebras of a polynomial ring, Algebraic and Topological Theories (Kinosaki, 1984), Kinokuniya, Tokyo (1986), p.~37–51.

J. Nagloo, A. Ovchinnikov, P. Thompson, Commuting planar polynomial vector fields for conservative Newton systems, Commun. Contemp. Math., 22, № 4, Article~1950025 (2020). DOI: https://doi.org/10.1142/S0219199719500251

A. Nowicki, M. Nagata, Rings of constants for k-derivations in k[x1,...,xn], J. Math. Kyoto Univ., 28, № 1, 111–118 (1988). DOI: https://doi.org/10.1215/kjm/1250520561

D. I. Panyushev, Two results on centralisers of nilpotent elements, J. Pure and Appl. Algebra, 212, № 4, 774–779 (2008). DOI: https://doi.org/10.1016/j.jpaa.2007.07.003

A. P. Petravchuk, O. G. Iena, On centralizers of elements in the Lie algebra of the special Cremona group SA2(k), J. Lie Theory, 16, № 3, 561–567 (2006).

R. Weitzenböck, Über die Invarianten von linearen Gruppen, Acta Math., 58, № 1, 231–293 (1932). DOI: https://doi.org/10.1007/BF02547779

Published

30.08.2023

Issue

Section

Research articles

How to Cite

Bedratyuk, L., et al. “Centralizers of Linear and Locally Nilpotent Derivations”. Ukrains’kyi Matematychnyi Zhurnal, vol. 75, no. 8, Aug. 2023, pp. 1043-52, https://doi.org/10.3842/umzh.v75i8.7529.