On index divisors and monogenity of certain octic number fields defined by x8+ax3+b
DOI:
https://doi.org/10.3842/umzh.v76i7.7536Keywords:
Theorem of Dedekind, Theorem of Ore, prime ideal factorization, Newton polygon, Index of a number field, Power integral basis, MonogenicAbstract
UDC 511
For any octic number field K generated by a root α of a monic irreducible trinomial F(x)=x8+ax3+b∈Z[x] and for every rational prime p, we show when p divides the index of K. We also describe the prime power decomposition of the index i(K). In this way, we give a partial answer to { Problem 22} of Narkiewicz [Elementary and analytic theory of algebraic numbers, Springer-Verlag, Auflage (2004)] for this family of number fields. As an application of our results, we conclude that if i(K)≠1, then K is not monogenic. We illustrate our results by some computational examples.
References
H. Cohen, A course in computational algebraic number theory, GTM, 138, Springer-Verlag, Berlin, Heidelberg (1993). DOI: https://doi.org/10.1007/978-3-662-02945-9
C. T. Davis, B. K. Spearman, The index of a quartic field defined by a trinomial x4+ax+b, J. Algebra and Appl., 17, № 10, 185–197 (2018). DOI: https://doi.org/10.1142/S0219498818501979
R. Dedekind, Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen, Göttingen Abhandlungen, 23, 1–23 (1878).
L. El Fadil, On common index divisors and monogenity of certain number fields defined by x5+ax2+b, Comm. Algebra, 50, № 7, 3102–3112 (2022). DOI: https://doi.org/10.1080/00927872.2022.2025820
L. El Fadil, On the index divisors and monogenity of number fields defined x5+ax3+b, Quaest., 1–11 (2023); DOI: 10.2989/16073606.2022.2156000.
L. El Fadil, I. Gaál, On non-monogenity of certain number fields defined by trinomials x4+ax2+b (2022); arXiv:2204.03226. DOI: https://doi.org/10.1515/ms-2023-0063
L. El Fadil, O. Kchit, On index divisors and monogenity of certain {sextic} number fields defined by x6+ax5+b, Vietnam J. Math. (2024); https://doi.org/10.1007/s10013-023-00679-3. DOI: https://doi.org/10.1007/s10013-023-00679-3
L. El Fadil, O. Kchit, On index divisors and monogenity of certain septic number fields defined by x7+ax3+b, Comm. Algebra, 1–15 (2022); DOI: 10.1080/00927872.2022.2159035. DOI: https://doi.org/10.5269/bspm.62352
L. El Fadil, J. Montes, E. Nart, Newton polygons and p-integral bases of quartic number fields, J. Algebra and Appl., 11, № 4, Article 1250073 (2012). DOI: https://doi.org/10.1142/S0219498812500739
A. J. Engler, Prestel, Valued fields, Springer-Verlag, Berlin, Heidelberg (2005).
H. T. Engstrom, On the common index divisor of an algebraic number field, Trans. Amer. Math. Soc., 32, 223–237 (1930). DOI: https://doi.org/10.1090/S0002-9947-1930-1501535-0
I. Gaál, A. Pethö, M. Pohst, On the indices of biquadratic number fields having Galois group V4, Arch. Math., 57, 357–361 (1991). DOI: https://doi.org/10.1007/BF01198960
J. Guàrdia, J. Montes, E. Nart, Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc., 364, № 1, 361–416 (2012). DOI: https://doi.org/10.1090/S0002-9947-2011-05442-5
K. Hensel, Arithmetische Untersuchungen über die gemeinsamen ausserwesentlichen Discriminantentheiler einer Gattung, J. reine und angew. Math., 113, 128–160 (1894); DOI: 10.1515/crll.1894.113.128. DOI: https://doi.org/10.1515/crll.1894.113.128
T. Nakahara, On the indices and integral bases of non-cyclic but Abelian biquadratic fields, Arch. Math., 41, № 6, 504–508 (1983). DOI: https://doi.org/10.1007/BF01198579
W. Narkiewicz, Elementary and analytic theory of algebraic numbers, Springer-Verlag, Auflage (2004). DOI: https://doi.org/10.1007/978-3-662-07001-7
E. Nart, On the index of a number field, Trans. Amer. Math. Soc., 289, 171–183 (1985). DOI: https://doi.org/10.1090/S0002-9947-1985-0779058-2
J. Neukirch, Algebraic number theory, Springer-Verlag, Berlin (1999). DOI: https://doi.org/10.1007/978-3-662-03983-0
J. Śliwa, On the nonessential discriminant divisor of an algebraic number field, Acta Arith., 42, 57–72 (1982). DOI: https://doi.org/10.4064/aa-42-1-57-72