The Fekete–Szegö functional associated with $m$-th root transformation using conical domains
Abstract
UDC 517.5
Let $\mathcal{A}$ be the class of analytic functions in the open unit disk $\mathbb{U}=\{z\in \mathbb{C}\colon |z|<1\}.$ Let $\mathcal{R}_{\alpha }^{p}$ be the operator defined on $\mathcal{A}$ by \begin{equation*}\mathcal{R}_{\alpha }^{p}=f(z) \ast \frac{z}{{{{({1-z})}^{2({1-\alpha })}}}}.\end{equation*} A function $f$ in $\mathcal{A}$ is said to be in the class $k$-$\mathcal{SP}_{\alpha }^{p}$ if $\mathcal{R}_{\alpha }^{p}(f) $ is a $k$-parabolic starlike function. We focus on the Fekete–Szegö inequality associated with $m$-th root transformation using conical domains for this class.
References
N. I. Ahiezer, Elements of theory of elliptic functions (in Russian), Moscow (1970).
G. D. Anderson, M. K. Vamanamurthy, M. K. Vourinen, Conformal invariants, inequalities and quasiconformal maps, Wiley-Interscience (1997).
H. M. Srivastava, S. Owa, Current topics in analytic function theory, World Sci. Publ. Co., Singapore (1992). DOI: https://doi.org/10.1142/1628
A. K. Mishra, P. Gochhayat, A coefficient inequality for a subclass of the Caratheodory functions defined using conical domains, Comput. Math. Appl., 2816–2820 (2011). DOI: https://doi.org/10.1016/j.camwa.2011.03.052
W. Ma, D. Minda, Uniformly convex functions. II, Ann. Polon. Math., 58, № 3, 275–285 (1993). DOI: https://doi.org/10.4064/ap-58-3-275-285
S. Kanas, Coefficient estimates in subclasses of the Caratheodory class related to conic domains, Acta Math. Comenian., 74, 149–161 (2005).
F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20, 8–12 (1969). DOI: https://doi.org/10.1090/S0002-9939-1969-0232926-9
A. K. Mishra, P. Gochhayat, Fekete–Szego problem for $k$-uniformly convex functions and for a class defined by Owa–Srivastava operator, J. Math. Anal. and Appl., 347, № 2, 563–572 (2008). DOI: https://doi.org/10.1016/j.jmaa.2008.06.009
A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56, 87–92 (1991). DOI: https://doi.org/10.4064/ap-56-1-87-92
S. Kanas, A. Wisniowska, Conic regions and $k$-uniform convexity, J. Comput. and Appl. Math., 105, 327–336 (1999). DOI: https://doi.org/10.1016/S0377-0427(99)00018-7
S. Kanas, A. Wisniowska, Conic regions and starlike functions, Rev. Roumaine Math. Pures Appl., 45, 647–657 (2000).
P. L. Duren, Univalent functions, Springer-Verlag, New York etc. (1983).
J. H. Choi, Y. C. Kim, T. Sugawa, A general approach to the Fekete–Szegö problem, J. Math. Soc. Japan, 59, № 3, 707–727 (2007). DOI: https://doi.org/10.2969/jmsj/05930707
M. Darus, T. N. Shanmugam, S. Sivasubramanian, Fekete–Szegö inequality for a certain class of analytic functions, Mathematica, 49(72), № 1, 29–34 (2007).
O. P. Ahuja, M. Jahangiri, Fekete–Szegö problem for a unified class of analytic functions, PanAmer. Math. J., 7, № 2, 67–78 (1997).
M. Darus, N. Tuneski, On the Fekete–Szegö problem for generalized close-to-convex functions, Int. Math. J., 4, № 6, 561–568 (2003).
S. Kanas, An unified approach to the Fekete–Szegö problem, Appl. Math. and Comput., 218, 8453–8461 (2012). DOI: https://doi.org/10.1016/j.amc.2012.01.070
S. Kanas, H. E. Darwish, Fekete–Szegö problem for starlike and convex functions of complex order, Appl. Math. Lett., 23, № 7, 777–782 (2010). DOI: https://doi.org/10.1016/j.aml.2010.03.008
A. K. Bakhtin, G. P. Bakhtina, Yu. B. Zelinskii, Topological-algebraic structures and geometric methods in complex analysis, Zb. Prats Inst. Math. NASU (2008).
A. K. Bakhtin, I. V. Denega, Extremal decomposition of the complex plane with free poles, J. Math. Sci., 246, № 1, 1–17 (2020). DOI: https://doi.org/10.1007/s10958-020-04718-z
I. Denega, Extremal decomposition of a multidimensional complex space with poles on the boundary of a polydisk, in: P. Cerejeiras, M. Reissig, I. Sabadini, J. Toft (eds), Current Trends in Analysis, Its Applications and Computation, Trends in Mathematics, Birkhäuser, Cham (2022), p. 143–151. DOI: https://doi.org/10.1007/978-3-030-87502-2_14
A. K. Bakhtin, I. V. Denega, Generalized M. A. Lavrentiev's inequality, J. Math. Sci., 262, 138–153 (2022). DOI: https://doi.org/10.1007/s10958-022-05806-y
Ya. V. Zabolotnii, I. V. Denega, An extremal problem on non-overlapping domains containing ellipse points, Eurasian Math. J., 12, № 4, 82–91 (2021). DOI: https://doi.org/10.32523/2077-9879-2021-12-4-82-91
Copyright (c) 2024 Murat Çağlar
This work is licensed under a Creative Commons Attribution 4.0 International License.