Sobolev-type theorem for commutators of Hardy operators in grand Herz spaces
Abstract
UDC 517.5
The higher-order commutators of fractional Hardy-type operators of variable order $\zeta(z)$ are shown to be bounded from the grand variable Herz spaces ${\dot{K} ^{a(\cdot), u),\theta}_{ p(\cdot)}(\mathbb{R}^n)}$ into the weighted space ${\dot{K} ^{a(\cdot), u),\theta}_{\rho, q(\cdot)}(\mathbb{R}^n)},$ where $\rho=(1+|z_1|)^{-\lambda}$ and $\displaystyle {1 \over q(z)}={1 \over p(z)}-{\zeta (z) \over n}$ if $p(z)$ is not necessarily constant at infinity.
References
M. Ruzicka, Electroreological fluids, modeling and mathematical theory, Springer, Lecture Notes in Math., 1748 (2000).
L. Diening, M. Ruzicka, Calderon–Zygmund operators on generalized Lebesgue spaces $L^{p(.)}$ and problems related to fluid dynamics, J. reine und angew. Math., 563, 197–220 (2003); DOI 10.1515/crll.2003.081. DOI: https://doi.org/10.1515/crll.2003.081
V. Kokilashvili, S. Samko, On Sobolev theorem for Riesz-type potentials in the Lebesgue spaces with variable exponent, Z. Anal. Anwend., 22, 899–910 (2003); DOI 10.4171/ZAA/1178. DOI: https://doi.org/10.4171/zaa/1178
A. Almeida, D. Drihem, Maximal, potential and singular type operators on Herz spaces with variable exponents, J. Math. Anal. and Appl., 394, 781–795 (2012); DOI 10.1016/j.jmaa.2012.04.043. DOI: https://doi.org/10.1016/j.jmaa.2012.04.043
J. L. Wu, W. J. Zhao, Boundedness for fractional Hardy-type operator on variable-exponent Herz–Morrey spaces, Kyoto J. Math., 56, № 4, 831–845 (2016); https://doi.org/10.1215/21562261-3664932. DOI: https://doi.org/10.1215/21562261-3664932
H. Nafis, H. Rafeiro, M. Zaighum, A note on the boundedness of sublinear operators on grand variable Herz spaces, J. Inequal. and Appl., 2020, № 1, 1–13 (2020). DOI: https://doi.org/10.1186/s13660-019-2265-6
B. Sultan, F. Azmi, M. Sultan, M. Mehmood, N. Mlaiki, Boundedness of Riesz potential operator on grand Herz–Morrey spaces, Axioms, 11, № 11, Article 583 (2022). DOI: https://doi.org/10.3390/axioms11110583
B. Sultan, M. Sultan, I. Khan, On Sobolev theorem for higher commutators of fractional integrals in grand variable Herz spaces, Commun. Nonlinear Sci. Numer. Simul., 126, Article ID 107464 (2023). DOI: https://doi.org/10.1016/j.cnsns.2023.107464
B. Sultan, M. Sultan, A. Khan, T. Abdeljawad, Boundedness of commutators of variable Marcinkiewicz fractional integral operator in grand variable Herz spaces, J. Inequal. and Appl., 93 (2024); https://doi.org/10.1186/s13660-024-03169-3. DOI: https://doi.org/10.1186/s13660-024-03169-3
B. Sultan, M. Sultan, M. Mehmood, F. Azmi, M. A. Alghafli, N. Mlaiki, Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent, AIMS Math., 8, № 1, 752–764 (2023); doi: 10.3934/math.2023036. DOI: https://doi.org/10.3934/math.2023036
Mahmood, N. Mlaiki, N. Souayah, Boundedness of fractional integrals on grand weighted Herz–Morrey spaces with variable exponent, Fractal and Fract., 6, № 11, 660–670 (2022); https://doi.org/10.3390/fractalfract6110660. DOI: https://doi.org/10.3390/fractalfract6110660
M. Sultan, B. Sultan, A. Aloqaily, N. Mlaiki, Boundedness of some operators on grand Herz spaces with variable exponent, AIMS Math., 8, № 6, 12964–12985 (2023); DOI: 10.3934/math.2023653. DOI: https://doi.org/10.3934/math.2023653
D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces, foundations and harmonic analysis, Appl. and Numer. Harmon. Anal., Birkhäuser, Heidelberg (2013). DOI: https://doi.org/10.1007/978-3-0348-0548-3
V. M. Kokilashvili et al., Integral operators in non-standard function spaces, Springer (2016).
V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral operators in non-standard function spaces, vol. 1, Variable exponent Lebesgue and Amalgam spaces, Oper. Theory Adv. and Appl., 248, Birkhäuser/Springer, Cham (2016). DOI: https://doi.org/10.1007/978-3-319-21015-5_1
V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral operators in non-standard function spaces, vol. 2, Variable exponent Hölder, Morrey–Campanato and grand spaces, Oper. Theory Adv. and Appl., 249, Birkhäuser/Springer, Cham (2016). DOI: https://doi.org/10.1007/978-3-319-21018-6
O. Kováčik, J. Rákosník, On spaces $L^{p(z)}$ and $W^{k,p(z)}$, Czechoslovak Math. J., 41, № 4, 592–618 (1991). DOI: https://doi.org/10.21136/CMJ.1991.102493
S. Samko, Variable exponent Herz spaces, Mediterr. J. Math., 10, № 4, 2007–2025 (2013). DOI: https://doi.org/10.1007/s00009-013-0285-x
M. Izuki, Boundedness of commutators on Herz spaces with variable exponent, Rend. Circ. Mat. Polermo, 59, 199–213 (2010). DOI: https://doi.org/10.1007/s12215-010-0015-1
Copyright (c) 2024 Babar Sultan
This work is licensed under a Creative Commons Attribution 4.0 International License.