Dynamical behavior of rational difference equation $x_{n+1}=\dfrac{x_{n-13}}{\pm1\pm x_{n-1}x_{n-3}x_{n-5}x_{n-7}x_{n-9} x_{n-11}x_{n-13}}$

  • D. Şimşek Konya Technical University, Turkey
  • B. Oğul Istanbul Aydin University, Turkey
  • F. G. Abdullayev Mersin University, Turkey and Kyrgyz–Turkish Manas University, Bishkek, Kyrgyz Republic
Keywords: Local stability, Periodic solution, Di erence equation.

Abstract

UDC 517.9

Discrete-time systems are sometimes used to explain natural phenomena encountered in nonlinear sciences. We study the periodicity, boundedness, oscillation, stability, and some exact solutions of nonlinear difference equations. Exact solutions are obtained by using the standard iteration method. Some well-known theorems are used to test the stability of the equilibrium points. Some numerical examples are also provided to confirm the validity of the theoretical results. The numerical component is implemented with the Wolfram Mathematica. The presented method  may be simply applied to other rational recursive issues.

In this paper, we explore the dynamics of adhering to rational difference formula \begin{equation*}x_{n+1}=\frac{x_{n-13}}{\pm1\pm x_{n-1}x_{n-3}x_{n-5}x_{n-7}x_{n-9} x_{n-11}x_{n-13}},\end{equation*} where the initials are arbitrary nonzero real numbers.

References

M. A. E. Abdelrahman, O. Moaaz, On the new class of the nonlinear rational difference equations, Electron. J. Math. Anal. and Appl., 6, № 2, 117–125 (2018).

R. P. Agarwal, E. M. Elsayed, On the solution of fourth-order rational recursive sequence, Adv. Stud. Contemp. Math., 20, № 2, 525–545 (2010).

A. M. Ahmed, A. M. Samir, L. S. Aljoufi, Expressions and dynamical behavior of solutions of a class of rational difference equations of fifteenth-order, J. Math. Comput. Sci., 25, 10–22 (2022). DOI: https://doi.org/10.22436/jmcs.025.01.02

H. S. Alayachi, M. S. M. Noorani, A. Q. Khan, M. B. Almatrafi, Analytic solutions and stability of sixth order difference equations, Math. Probl. Eng., 2020, Article ID 1230979, 12–23 (2020). DOI: https://doi.org/10.1155/2020/1230979

M. B. Almatrafi, M. M. Alzubaidi, Analysis of the qualitative behaviour of an eighth-order fractional difference equation, Open J. Discrete Appl. Math., 2, № 1, 41–47 (2019). DOI: https://doi.org/10.30538/psrp-odam2019.0010

A. M. Amleh, G. A. Grove, G. Ladas, D. A. Georgiou, On the recursive sequence $x_{n+1}=α + dfrac{x_{n-1}}{x_{n}}$, J. Math. Anal. and Appl., 233, 790–798 (1999). DOI: https://doi.org/10.1006/jmaa.1999.6346

C. Cinar, T. Mansour, I. Yalcinkaya, On the difference equation of higher order, Utilitas Math., 92, 161–166 (2013).

R. DeVault, G. Ladas, S. W. Schultz, On the recursive sequence $x_{n+1}=dfrac{A}{x_{n}}+dfrac{1}{x_{n-2}}$, Proc. Amer. Math. Soc., 126, № 11, 3257–3261 (1998). DOI: https://doi.org/10.1090/S0002-9939-98-04626-7

S. Elaydi, An introduction to difference equations, 3rd ed., Springer (2005).

E. M. Elsayed, On the difference equation $x_{n+1}=dfrac{x_{n-5}}{-1+x_{n-2}x_{n-5}}$, Int. J. Contemp. Math. Sci., 3, № 33, 1657–1664 (2008).

E. M. Elsayed, M. M. Alzubaidi, Expressions and dynamical behavior of rational recursive sequences, Int. J. Comput. Anal. and Appl., 28, № 1, 67–79 (2020).

A. Gelisken, On a system of rational difference equations, J. Comput. Anal. and Appl., 23, № 4, 593–606 (2017).

C. H. Gibbons, M. R. S. Kulenovic, G. Ladas, On the recursive sequence $dfrac{α+β x{n-1}}{ξ+β x{n-1}}$, Math. Sci. Res. Hot-Line, 4, № 2, 1–11 (2000).

T. F. Ibrahim, Behavior of some higher order nonlinear rational partial difference equations, J. Egyptian Math. Soc., 24, № 4, 532–537 (2016). DOI: https://doi.org/10.1016/j.joems.2016.03.004

T. F. Ibrahim, A. Q. Khan, B. Ogul, D.Şimşek, Closed-form solution of a rational difference equation, Math. Probl. Eng. (2021). DOI: https://doi.org/10.1155/2021/3168671

R. Karatas, C. Cinar, D. Simsek, On positive solutions of the difference equation $x_{n+1}=dfrac{x_{n-5}}{1+x_{n-2}x_{n-5}}$, Int. J. Contemp. Math. Sci., 10, № 1, 495–500 (2006). DOI: https://doi.org/10.12988/ijcms.2006.06055

O. Karpenko, O. Stanzhytskyi, The relation between the existence of bounded solutions of differential equations and the corresponding difference equations, J. Difference Equat. and Appl., 19, № 12, 1967–1982 (2013); DOI: https://doi.org/10.1080/10236198.2013.794795

https://doi.org/ 10.1080/10236198.2013.794795.

M. Bohner, O. Karpenko, O. Stanzhytskyi, Oscillation of solutions of second-order linear differential equations and corresponding difference equations, J. Difference Equat. and Appl., 20, № 7, 1112–1126 (2014); https://doi.org/ 10.1080/10236198.2014.893297. DOI: https://doi.org/10.1080/10236198.2014.893297

V. L. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Math. and Appl., Kluwer Acad. Publ. Group, Dordrecht (1993). DOI: https://doi.org/10.1007/978-94-017-1703-8

M. R. S Kulenovic, G. G. Ladas, W. S. Sizer, On the recursive sequence $dfrac{α x_{n}+β x_{n-1}}{ξ x_{n}+β x_{n-1}}$, Math. Sci. Res. Hot-Line, 2, № 5, 1–16 (1998).

M. Aloqeili, Dynamics of a rational difference equation, Appl. Math. and Comput., 176, № 2, 768–774 (2006). DOI: https://doi.org/10.1016/j.amc.2005.10.024

A. Sanbo, A. E. M. Elsayed, Some properties of the solutions of the difference equation $x_{n+1}= α x_{n} + (b x_{n}x_{n-4}) /(c x_{n-3}+d x_{n-4})$, Open J. Discrete Appl. Math., 2, № 2, 31–47 (2019). DOI: https://doi.org/10.30538/psrp-odam2019.0014

D. Simşek, B. Ogul, C. Cinar, Solution of the rational difference equation $x_{n+1}=dfrac{x_{n-17}}{1+x_{n-5}x_{n-11}}$, Filomat, 33, № 5, 1353–1359 (2019). DOI: https://doi.org/10.2298/FIL1905353S

D. Simsek, B. Ogul, F. Abdullayev, Solution of the rational difference equation, Appl. Math. and Nonlinear Sci., 5, № 1, 485–494 (2019).

D. Simsek, B. Ogul, F. Abdullayev, Solutions of the rational difference equations $x_{n+1}=dfrac{x_{n-11}}{1+x_{n-2}x_{n-5}x_{n-8}}$, AIP Conf. Proc., 1880, № 1 (2017). DOI: https://doi.org/10.1063/1.5000619

S. Stevic, A note on periodic character of a higher order difference equation, Rostock. Math. Kolloq., 61, 2–30 (2006).

S. Stevic, B. Iricanin, Z. Smarda, On a product-type system of difference equations of second order solvable in closed form, J. Inequal. and Appl., 2015, № 1, 327–334 (2012). DOI: https://doi.org/10.1186/s13660-015-0835-9

B. Oğul, D.Şimc sek, H. Öğünmez, A. S. Kurbanli, Dynamical behavior of rational difference equation $ x_ {n+ 1}=dfrac {x_ {n-17}}{± 1± x_ {n-2} x_ {n-5} x_ {n-8} x_ {n-11} x_ {n-14} x_ {n-17}}$, Bol. Soc. Mat. Mex., 27, № 2, 1–20 (2021). DOI: https://doi.org/10.1007/s40590-021-00357-9

B. Oğul, D.Şimc sek, F. Abdullayev, A. Farajzadeh, On the recursive sequence $x_ {n+ 1}=dfrac {x_ {n-7}}{± 1± x_ {n-1} x_ {n-3} x_ {n-5}}$, Thai J. Math., 20, № 1, 111–119 (2022).

Published
04.08.2024
How to Cite
ŞimşekD., OğulB., and AbdullayevF. G. “Dynamical Behavior of Rational Difference Equation $x_{n+1}=\dfrac{x_{n-13}}{\pm1\pm x_{n-1}x_{n-3}x_{n-5}x_{n-7}x_{n-9} x_{n-11}x_{n-13}}$”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 7, Aug. 2024, pp. 1093 -08, doi:10.3842/umzh.v76i7.7548.
Section
Research articles