Direct and inverse approximation theorems for functions defined in Damek–Ricci spaces

  • S. El Ouadih Laboratory MC, Polydisciplinary Faculty of Safi, University of Cadi Ayyad, Marrakech, Morocco, and Laboratory TAGMD, Faculty of Sciences Aīn Chock, University of Hassan II, Casablanca, Morocco
Keywords: Damek-Ricci spaces, Fourier-Helgason transform, Spherical modulus of of smoothness, Direct and inverse theorems

Abstract

UDC 517.5

We introduce the notion of $k$th modulus of smoothness and establish the direct and inverse theorems in terms of the quantities $E_{s}(f)$  and the moduli of  smoothness generated by the spherical mean operator  defined on the $L^{2}$-space for the Damek–Ricci spaces. These theorems are analogous to the well-known theorems of Jackson and Bernstein. We also consider some problems related to the constructive characteristics of functional classes defined by the majorants of the moduli of smoothness of their elements.

References

J. P. Anker, E. Damek, C. Yacoub, Spherical analysis on harmonic $AN$ groups, Ann. Sc. Norm. Super. Pisa Cl. Sci., 23, № 4, 643–679 (1996).

F. Astengo, R. Camporesi, B. Di Blasio, The Helgason Fourier transform on a class of nonsymmetric harmonic spaces, Bull. Aust. Math. Soc., 55, № 3, 405–424 (1997). DOI: https://doi.org/10.1017/S0004972700034079

F. Astengo, B. Di Blasio, A Paley–Wiener theorem on $NA$ harmonic spaces, Colloq. Math., 80, № 2, 211–233 (1999). DOI: https://doi.org/10.4064/cm-80-2-211-233

W. O. Bray, M. A. Pinsky, Growth properties of Fourier transforms via moduli of continuity, J. Funct. Anal., 255, № 9, 2265–2285 (2008). DOI: https://doi.org/10.1016/j.jfa.2008.06.017

M. Cowling, A. Dooley, A. Kor'{a}nyi, F. Ricci, An approach to symmetric spaces of rank one via groups of Heisenberg type, J. Geom. Anal., 8, № 2, 199–237 (1998). DOI: https://doi.org/10.1007/BF02921641

E. Damek, F. Ricci, Harmonic analysis on solvable extensions of $H$-type groups, J. Geom. Anal., 2, 213–248 (1992). DOI: https://doi.org/10.1007/BF02921294

P. Butzer, R. Nessel, Fourier analysis and approximation, One-dimensional theory, Birkhäuser, Basel (1971). DOI: https://doi.org/10.1007/978-3-0348-7448-9

R. A. DeVore, G. G. Lorentz, Constructive approximation, Springer, Berlin (1993). DOI: https://doi.org/10.1007/978-3-662-02888-9

V. K. Dzyadyk, I. A. Shevchuk, Theory of uniform approximation of functions by polynomials, Walter de Gruyter GmbH and Co., Berlin (2008). DOI: https://doi.org/10.1515/9783110208245

A. I. Stepanets, Methods of approximation theory, VSP, Leiden, Boston (2005). DOI: https://doi.org/10.1515/9783110195286

M. F. Timan, Approximation and properties of periodic functions, Naukova Dumka, Kiev (2009).

N. K. Bari, On the best approximation of two conjugate functions by trigonometric polynomials, Izv. Akad. Nauk SSSR, Ser. Mat., 19, 285–302 (1955).

N. K. Bari, S. B. Stechkin, Best approximations and differential properties of two conjugate functions, Tr. Mosk. Mat. Obshch., 5, 483–522 (1956).

S. Giulini, Bernstein and Jackson theorems for the Heisenberg group, J. Aust. Math. Soc., 38, 241–254 (1985). DOI: https://doi.org/10.1017/S1446788700023107

S. K. Ray, R. P. Sarkar, Fourier and Radon transform on harmonic $NA$ groups, Trans. Amer. Math. Soc., 361, № 8, 4269–4297 (2009). DOI: https://doi.org/10.1090/S0002-9947-09-04800-4

S. S. Platonov, Approximation of functions in the $L_{2}$-metric on noncompact symmetric spaces of rank $1$, Algebra i Analyz, 11, № 1, 244–270 (1999).

T. H. Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie groups, in: Special Functions: Group Theoretical Aspects and Applications, Math. Appl., Reidel, Dordrecht (1984), p.~1–85. DOI: https://doi.org/10.1007/978-94-010-9787-1_1

P. Kumar, S. K. Ray, R. P. Sarkar, The role of restriction theorems in harmonic analysis on harmonic $NA$ groups, J. Funct. Anal., 258, № 7, 2453–2482 (2010). DOI: https://doi.org/10.1016/j.jfa.2010.01.001

V. A. Abilov, F. V. Abilova, Approximation of functions by Fourier–Bessel sums, Izv. Vyssh. Uchebn. Zaved. Mat., 8, № 39 (2001).

J. Berndt, F. Tricerri, L. Vanhecke, Damek–Ricci spaces, Generalized Heisenberg Groups and Damek–Ricci Harmonic Spaces, 78–114 (1995); doi:10.1007/bfb0076906. DOI: https://doi.org/10.1007/BFb0076906

F. G. Abdullayev, P. Özkartepe, V. V. Savchuk, A. L. Shidlich, Exact constants in direct and inverse approximation theorems for functions of several variables in the spaces $mathcal{S}^{p}$, Filomat, 33, № 5, 1471–1484 (2019). DOI: https://doi.org/10.2298/FIL1905471A

V. V. Savchuk, A. L. Shidlich, Approximation of functions of several variables by linear methods in the space $mathcal{S}^{p}$, Acta Sci. Math., 80, 477–489 (2014). DOI: https://doi.org/10.14232/actasm-012-837-8

Published
04.09.2024
How to Cite
El OuadihS. “Direct and Inverse Approximation Theorems for Functions Defined in Damek–Ricci Spaces”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 8, Sept. 2024, pp. 1132 -46, doi:10.3842/umzh.v76i8.7549.
Section
Research articles