Explicit estimates of the number of distinct prime divisors of binomial coefficients
DOI:
https://doi.org/10.3842/umzh.v76i8.7551Keywords:
Binomial coefficient, Primorial number,, Explicit estimate, Prime divisorAbstract
UDC 511
We propose explicit estimates of the number of distinct prime divisors of a binomial coefficient through the explicit generalizations of some principal existing results. We also prove interesting number-theoretical propositions for the terms of a sequence of primes.
References
H. Alzer, J. Sándor, On a binomial coefficient and a product of prime numbers, Appl. Anal. and Discrete Math., 5, 87–92 (2011). DOI: https://doi.org/10.2298/AADM110206008A
S. Casacuberta, On the divisibility of binomial coefficients, Ars Math. Contemp., 19, 297–309 (2020). DOI: https://doi.org/10.26493/1855-3974.2103.e84
E. F. Ecklund, P. Erdős, J. L. Selfridge, A new function associated with the prime factors of beginpmatrixnkendpmatrix, Math. Comp., 28, 647–649 (1974). DOI: https://doi.org/10.1090/S0025-5718-1974-0337732-2
P. Erdős, Über die Anzahl der Primfaktoren von beginpmatrixnkendpmatrix, Arch. Math., 24, 53–56 (1973). DOI: https://doi.org/10.1007/BF01228172
P. Erdős, R. L. Graham, I. Z. Ruzsa, E. G. Straus, On the prime factors of beginpmatrix2nnendpmatrix, Math. Comp., 29, 83–92 (1975). DOI: https://doi.org/10.1090/S0025-5718-1975-0369288-3
P. Erdős, H. Gupta, S. P. Khare, On the number of distinct prime divisors of beginpmatrixnkendpmatrix, Util. Math., 10, 51–60 (1976).
P. Erdős, Some unconventional problems in number theory, Math. Mag., 52, 67–70 (1979). DOI: https://doi.org/10.1080/0025570X.1979.11976756
P. Goetgheluck, Computing binomial coefficients, Amer. Math. Monthly, 94, 360–365 (1987). DOI: https://doi.org/10.1080/00029890.1987.12000648
P. Goetgheluck, On prime divisors of binomial coefficients, Math. Comp., 51, 325–329 (1988). DOI: https://doi.org/10.1090/S0025-5718-1988-0942159-6
H. Gupta, S. P. Khare, On beginpmatrixk2kendpmatrix and the product of the first k-primes, Publ. Fac. 'Electrotech. Univ. Belgrade, S'er. Math. Phys., 577-598, 25–29 (1977).
K. Marko, Divisibility of binomial coefficients near a half-line and in convex set, Acta Math. Univ. Comenian., 50/51, 267–275 (1987).
P. A. B. Pleasants, The number of prime factors of binomial coefficients, J. Number Theory, 15, 203–225 (1982). DOI: https://doi.org/10.1016/0022-314X(82)90026-9
G. Robin, Estimation de la fonction de Tchebychef theta sur le k^{text{ième}} nombre premier et grande valeurs de la fonction omega(n) nombre de diviseurs premiers de n, Acta Arith., 42, 367–389 (1983). DOI: https://doi.org/10.4064/aa-42-4-367-389
A. Sárközy, On divisors of binomial coefficients. I, J. Number Theory, 20, 70–80 (1985). DOI: https://doi.org/10.1016/0022-314X(85)90017-4
H. Scheid, Die Anzahl der Primfaktoren in begin{pmatrix}{n}{k}end{pmatrix}, Arch. Math., 20, 581–582 (1969). DOI: https://doi.org/10.1007/BF01899057
N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences; https://oeis.org.
P. Stănică, Good lower and upper bounds on binomial coefficients, J. Inequal. Pure and Appl. Math., 2, Article 30 (2001).