Explicit estimates of the number of distinct prime divisors of binomial coefficients
Abstract
UDC 511
We propose explicit estimates of the number of distinct prime divisors of a binomial coefficient through the explicit generalizations of some principal existing results. We also prove interesting number-theoretical propositions for the terms of a sequence of primes.
References
H. Alzer, J. Sándor, On a binomial coefficient and a product of prime numbers, Appl. Anal. and Discrete Math., 5, 87–92 (2011). DOI: https://doi.org/10.2298/AADM110206008A
S. Casacuberta, On the divisibility of binomial coefficients, Ars Math. Contemp., 19, 297–309 (2020). DOI: https://doi.org/10.26493/1855-3974.2103.e84
E. F. Ecklund, P. Erdős, J. L. Selfridge, A new function associated with the prime factors of $begin{pmatrix}{n}{k}end{pmatrix}$, Math. Comp., 28, 647–649 (1974). DOI: https://doi.org/10.1090/S0025-5718-1974-0337732-2
P. Erdős, Über die Anzahl der Primfaktoren von $begin{pmatrix}{n}{k}end{pmatrix}$, Arch. Math., 24, 53–56 (1973). DOI: https://doi.org/10.1007/BF01228172
P. Erdős, R. L. Graham, I. Z. Ruzsa, E. G. Straus, On the prime factors of $begin{pmatrix}{2n}{n}end{pmatrix}$, Math. Comp., 29, 83–92 (1975). DOI: https://doi.org/10.1090/S0025-5718-1975-0369288-3
P. Erdős, H. Gupta, S. P. Khare, On the number of distinct prime divisors of $begin{pmatrix}{n}{k}end{pmatrix}$, Util. Math., 10, 51–60 (1976).
P. Erdős, Some unconventional problems in number theory, Math. Mag., 52, 67–70 (1979). DOI: https://doi.org/10.1080/0025570X.1979.11976756
P. Goetgheluck, Computing binomial coefficients, Amer. Math. Monthly, 94, 360–365 (1987). DOI: https://doi.org/10.1080/00029890.1987.12000648
P. Goetgheluck, On prime divisors of binomial coefficients, Math. Comp., 51, 325–329 (1988). DOI: https://doi.org/10.1090/S0025-5718-1988-0942159-6
H. Gupta, S. P. Khare, On $begin{pmatrix}{k^2}{k}end{pmatrix}$ and the product of the first $k$-primes, Publ. Fac. 'Electrotech. Univ. Belgrade, S'er. Math. Phys., 577-598, 25–29 (1977).
K. Marko, Divisibility of binomial coefficients near a half-line and in convex set, Acta Math. Univ. Comenian., 50/51, 267–275 (1987).
P. A. B. Pleasants, The number of prime factors of binomial coefficients, J. Number Theory, 15, 203–225 (1982). DOI: https://doi.org/10.1016/0022-314X(82)90026-9
G. Robin, Estimation de la fonction de Tchebychef $theta$ sur le $k^{text{ième}}$ nombre premier et grande valeurs de la fonction $omega(n)$ nombre de diviseurs premiers de $n$, Acta Arith., 42, 367–389 (1983). DOI: https://doi.org/10.4064/aa-42-4-367-389
A. Sárközy, On divisors of binomial coefficients. I, J. Number Theory, 20, 70–80 (1985). DOI: https://doi.org/10.1016/0022-314X(85)90017-4
H. Scheid, Die Anzahl der Primfaktoren in $begin{pmatrix}{n}{k}end{pmatrix}$, Arch. Math., 20, 581–582 (1969). DOI: https://doi.org/10.1007/BF01899057
N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences; https://oeis.org.
P. Stănică, Good lower and upper bounds on binomial coefficients, J. Inequal. Pure and Appl. Math., 2, Article 30 (2001).
Copyright (c) 2024 DJAMEL BERKANE, Boualem SADAOUI, PIERRE DUSART
This work is licensed under a Creative Commons Attribution 4.0 International License.