Explicit estimates of the number of distinct prime divisors of binomial coefficients

Authors

DOI:

https://doi.org/10.3842/umzh.v76i8.7551

Keywords:

Binomial coefficient, Primorial number,, Explicit estimate, Prime divisor

Abstract

UDC 511

We propose explicit estimates of the number of distinct prime divisors of a binomial coefficient through the explicit generalizations of some principal existing results. We also prove interesting number-theoretical propositions for  the terms of a sequence of primes.

References

H. Alzer, J. Sándor, On a binomial coefficient and a product of prime numbers, Appl. Anal. and Discrete Math., 5, 87–92 (2011). DOI: https://doi.org/10.2298/AADM110206008A

S. Casacuberta, On the divisibility of binomial coefficients, Ars Math. Contemp., 19, 297–309 (2020). DOI: https://doi.org/10.26493/1855-3974.2103.e84

E. F. Ecklund, P. Erdős, J. L. Selfridge, A new function associated with the prime factors of beginpmatrixnkendpmatrix, Math. Comp., 28, 647–649 (1974). DOI: https://doi.org/10.1090/S0025-5718-1974-0337732-2

P. Erdős, Über die Anzahl der Primfaktoren von beginpmatrixnkendpmatrix, Arch. Math., 24, 53–56 (1973). DOI: https://doi.org/10.1007/BF01228172

P. Erdős, R. L. Graham, I. Z. Ruzsa, E. G. Straus, On the prime factors of beginpmatrix2nnendpmatrix, Math. Comp., 29, 83–92 (1975). DOI: https://doi.org/10.1090/S0025-5718-1975-0369288-3

P. Erdős, H. Gupta, S. P. Khare, On the number of distinct prime divisors of beginpmatrixnkendpmatrix, Util. Math., 10, 51–60 (1976).

P. Erdős, Some unconventional problems in number theory, Math. Mag., 52, 67–70 (1979). DOI: https://doi.org/10.1080/0025570X.1979.11976756

P. Goetgheluck, Computing binomial coefficients, Amer. Math. Monthly, 94, 360–365 (1987). DOI: https://doi.org/10.1080/00029890.1987.12000648

P. Goetgheluck, On prime divisors of binomial coefficients, Math. Comp., 51, 325–329 (1988). DOI: https://doi.org/10.1090/S0025-5718-1988-0942159-6

H. Gupta, S. P. Khare, On beginpmatrixk2kendpmatrix and the product of the first k-primes, Publ. Fac. 'Electrotech. Univ. Belgrade, S'er. Math. Phys., 577-598, 25–29 (1977).

K. Marko, Divisibility of binomial coefficients near a half-line and in convex set, Acta Math. Univ. Comenian., 50/51, 267–275 (1987).

P. A. B. Pleasants, The number of prime factors of binomial coefficients, J. Number Theory, 15, 203–225 (1982). DOI: https://doi.org/10.1016/0022-314X(82)90026-9

G. Robin, Estimation de la fonction de Tchebychef theta sur le k^{text{ième}} nombre premier et grande valeurs de la fonction omega(n) nombre de diviseurs premiers de n, Acta Arith., 42, 367–389 (1983). DOI: https://doi.org/10.4064/aa-42-4-367-389

A. Sárközy, On divisors of binomial coefficients. I, J. Number Theory, 20, 70–80 (1985). DOI: https://doi.org/10.1016/0022-314X(85)90017-4

H. Scheid, Die Anzahl der Primfaktoren in begin{pmatrix}{n}{k}end{pmatrix}, Arch. Math., 20, 581–582 (1969). DOI: https://doi.org/10.1007/BF01899057

N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences; https://oeis.org.

P. Stănică, Good lower and upper bounds on binomial coefficients, J. Inequal. Pure and Appl. Math., 2, Article 30 (2001).

Published

04.09.2024

Issue

Section

Research articles

How to Cite

Berkane, Djamel, et al. “Explicit Estimates of the Number of Distinct Prime Divisors of Binomial Coefficients”. Ukrains’kyi Matematychnyi Zhurnal, vol. 76, no. 8, Sept. 2024, pp. 1111-9, https://doi.org/10.3842/umzh.v76i8.7551.