On the nilpotency of some modules over group rings
Abstract
UDC 512.553
We study $RG$-modules that do not contain nonzero $G$-perfect factors. In particular, it is shown that if a group $G$ is finite and $R$ is a Dedekind domain with some additional restrictions, then these $RG$-modules are $G$-nilpotent.
References
A. Ballester-Bolinches, L. A. Kurdachenko, J. Otal, T. Pedraza, Infinite groups with many permutable subgroups, Rev. Mat. Iberoam., 24, № 3, 745–764 (2008). DOI: https://doi.org/10.4171/rmi/555
J. C. Beidleman, D. J. S. Robinson, On the structure of the normal subgroups of a group: nilpotency, Forum Math., 3, 581–593 (1991); DOI:10.1515/ form.1991.3.581. DOI: https://doi.org/10.1515/form.1991.3.581
C. J. B. Brookes, Groups with every subgroup subnormal, Bull. Lond. Math. Soc., 15, № 3, 235–238 (1983); DOI:10.1112/blms/15.3.235. DOI: https://doi.org/10.1112/blms/15.3.235
C. J. B. Brookes, Abelian subgroups and Engel elements of soluble groups, J. Lond. Math. Soc. (2), 32, № 3, 467–476 (1985); DOI:10.1112/jlms/s2-32.3.467. DOI: https://doi.org/10.1112/jlms/s2-32.3.467
C. J. B. Brookes, Engel elements of soluble groups, Bull. Lond. Math. Soc., 18, № 1, 7–10 (1986); DOI:10.1112/blms/18.1.7. DOI: https://doi.org/10.1112/blms/18.1.7
K. W. Gruenberg, The upper central series in soluble groups, Illinois J. Math., 5, № 3, 436–466 (1961); DOI:10.1215/ijm/1255630890. DOI: https://doi.org/10.1215/ijm/1255630890
P. Hall, Some sufficient conditions for a group to be nilpotent, Illinois J. Math., 2, № 4B, 787–801 (1958); DOI:10.1215/ijm/1255448649. DOI: https://doi.org/10.1215/ijm/1255448649
P. Hall, The Frattini subgroup of finitely generated groups, Proc. Lond. Math. Soc. (3), 11, № 1, 327–352 (1961); DOI:10.1112/plms/s3-11.1.327. DOI: https://doi.org/10.1112/plms/s3-11.1.327
L. A. Kaloujnine, Über gewisse Beziehungen zwischen einer Gruppe und ihren Automorphismen, Bericht Math. Tagung Berlin, 4, 164–172 (1953).
L. A. Kurdachenko, J. Otal, I. Ya. Subbotin, Groups with prescribed quotient groups and associated module theory, World Sci., New Jersey (2002). DOI: https://doi.org/10.1142/4839
L. A. Kurdachenko, J. Otal, I. Ya. Subbotin, Artinian modules over group rings, Front. Math., Birkhäuser, Basel (2007).
L. A. Kurdachenko, N. N. Semko, I. Ya. Subbotin, Insight into modules over Dedekind domains, Institute of Mathematics of NAS of Ukraine, Kyiv (2008).
J. C. Lennox, D. J. S. Robinson, The theory of infinite soluble groups, Clarendon Press, Oxford (2004). DOI: https://doi.org/10.1093/acprof:oso/9780198507284.001.0001
Copyright (c) 2023 Oleksandr Pypka
This work is licensed under a Creative Commons Attribution 4.0 International License.