On the structure of the algebra of derivations of some low-dimensional Leibniz algebras
Abstract
UDC 512.554
We start the description of the algebra of derivations of Leibniz algebras with dimension $3.$ It is clear that the description of the algebra of derivations of all Leibniz algebras with dimension $3,$ is quite large. Therefore, we focus on the description of nilpotent Leibniz algebras whose nilpotency class is equal to $3$ and nilpotent Leibniz algebras whose center has dimension $2.$
References
Sh. Ayupov, B. Omirov, I. Rakhimov, Leibniz algebras: structure and classification, CRC Press, Taylor and Francis Group (2020).
A. Blokh, On a generalization of the concept of Lie algebra (in Russian), Dokl. Akad. Nauk SSSR, 165, № 3, 471–473 (1965).
J. M. Casas, M. A. Insua, M. Ladra, S. Ladra, An algorithm for the classification of $3$-dimensional complex Leibniz algebras, Linear Algebra and Appl., 436, № 9, 3747–3756 (2012); DOI:10.1016/j.laa.2011.11.039. DOI: https://doi.org/10.1016/j.laa.2011.11.039
C. Cuvier, Algébres de Leibnitz: définitions, propriétés, Ann. Sci. Éc. Norm. Supér. (4), 27, № 1, 1–45 (1994); DOI:10.24033/asens.1687. DOI: https://doi.org/10.24033/asens.1687
I. Demir, K. C. Misra, E. Stitzinger, On some structures of Leibniz algebras, Recent Advances in Representation Theory, Quantum Groups, Algebraic Geometry, and Related Topics, Contemp. Math., 623, 41–54 (2014); DOI:10.1090/conm/623/12456. DOI: https://doi.org/10.1090/conm/623/12456
A. Kh. Khudoyberdiyev, T. K. Kurbanbaev, B. A. Omirov, Classification of three-dimensional solvable $p$-adic Leibniz algebras, $p$-Adic Numbers Ultrametric Anal. and Appl., 2, № 3, 207–221 (2010); DOI:10.1134/S2070046610030039. DOI: https://doi.org/10.1134/S2070046610030039
L. A. Kurdachenko, J. Otal, A. A. Pypka, Relationships between the factors of the canonical central series of Leibniz algebras, Eur. J. Math., 2, № 2, 565–577 (2016); DOI:10.1007/s40879-016-0093-5. DOI: https://doi.org/10.1007/s40879-016-0093-5
L. A. Kurdachenko., I. Ya. Subbotin, V. S. Yashchuk, On the endomorphisms and derivations of some Leibniz algebras, J. Algebra and Appl. (2022); DOI:10.1142/S0219498824500026. DOI: https://doi.org/10.1142/S0219498824500026
L. A. Kurdachenko, M. M. Semko, V. S. Yashchuk, On the structure of the algebra of cyclic Leibniz algebras, Algebra and Discrete Math., 32, № 2, 241–252 (2021); DOI: http://dx.doi.org/10.12958/adm1898. DOI: https://doi.org/10.12958/adm1898
M. Ladra, I. M. Rikhsiboev, R. M. Turdibaev, Automorphisms and derivations of Leibniz algebras, Ukr. Math. J., 68, № 7, 1062–1076 (2016); DOI:10.1007/s11253-016-1277-3. DOI: https://doi.org/10.1007/s11253-016-1277-3
J.-L. Loday, Cyclic homology, Grundlehren Math. Wiss., 301, Springer-Verlag (1992); DOI:10.1007/978-3-662-11389-9. DOI: https://doi.org/10.1007/978-3-662-11389-9
J.-L. Loday, Une version non commutative des alg?bres de Lie: les alg?bras de Leibniz, Enseign. Math., 39, 269–293 (1993).
J.-L. Loday, T. Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann., 296, № 1, 139–158 (1993); DOI:10.1007/ BF01445099.
M. M. Semko, L. V. Skaskiv, O. A. Yarovaya, On the derivations of cyclic Leibniz algebras, Carpathian Math. Publ., 14, № 2, 345–353 (2021); DOI:10.15330/cmp.14.2.346-353.
I. S. Rakhimov, I. M. Rikhsiboev, M. A. Mohammed, An algorithm for classifications of three-dimensional Leibniz algebras over arbitrary fields, JP J. Algebra, Number Theory and Appl., 40, № 2, 181–198 (2018); DOI:10.17654/NT040020181. DOI: https://doi.org/10.17654/NT040020181
I. M. Rikhsiboev, I. S. Rakhimov, Classification of three dimensional complex Leibniz algebras, AIP Conf. Proc., 1450, № 1, 358–362 (2012); DOI:10.1063/1.4724168. DOI: https://doi.org/10.1063/1.4724168
V. S. Yashchuk, On some Leibniz algebras, having small dimension, Algebra and Discrete Math., 27, № 2, 292–308 (2019).
Copyright (c) 2024 Микола Семко
This work is licensed under a Creative Commons Attribution 4.0 International License.