Multiple solutions for a $p(x)$-Laplacian-like problem under Neumann boundary condition

  • K. Kefi Faculty of Computing and Information Technology, Northern Border University, Rafha, Kingdom of Saudi Arabia
Keywords: $p(x)$-Laplacian like problem, critical theorem, generalized Sobolev space, variable exponent

Abstract

UDC 517.9

We prove the existence of at least three weak solutions for a class of $p(x)$-Laplacian-like problems with Neumann boundary conditions by using a critical theorem of Bonanno and Marano [Appl. Anal., 89, 1–10 (2010)].

References

S. N. Antontsev, S. I. Shmarev, A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions, Nonlinear Anal., 60, 515–545 (2005). DOI: https://doi.org/10.1016/S0362-546X(04)00393-1

G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal., 75, 2992–3007 (2012). DOI: https://doi.org/10.1016/j.na.2011.12.003

G. Bonanno, S. A. Marano, On the structure of the critical set of nondifferentiable functions with a weak compactness condition, Appl. Anal., 89, 1–10 (2010). DOI: https://doi.org/10.1080/00036810903397438

Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image processing, SIAM J. Appl. Math., 66, 1383–1406 (2006). DOI: https://doi.org/10.1137/050624522

D. Edmunds, J. Rakosnik, Sobolev embeddings with variable exponent, Studia Math., 143, 267–293 (2000). DOI: https://doi.org/10.4064/sm-143-3-267-293

X. Fan, D. Zhao, On the spaces $L^{p} (x) (Ω)$ and $W^{m,p} (x) (Ω)$, J. Math. Anal. and Appl., 263, 424–446 (2001). DOI: https://doi.org/10.1006/jmaa.2000.7617

B. Ge, On superlinear $p(x)$-Laplacian-like problem without Ambrosetti and Rabinowitz condition, Bull. Korean Math. Soc., 51, № 2, 409–421 (2014); http://dx.doi.org/10.4134/BKMS.2014.51.2.409. DOI: https://doi.org/10.4134/BKMS.2014.51.2.409

S. Heidherkhani, A. Salari, $p(x)$-Laplacian-like problems with Neumann condition originated from a Capillary phenomena, J. Nonlinear Funct. Anal. (2018); https://doi.org/10.23952/jnfa.2018.11. DOI: https://doi.org/10.23952/jnfa.2018.11

K. Kefi, $p(x)$-Laplacian with indefinite weight, Proc. Amer. Math. Soc., 139, 4351–4360 (2011). DOI: https://doi.org/10.1090/S0002-9939-2011-10850-5

K. Kefi, N. Irzi, M. M. Al-Shomrani, Existence of three weak solutions for fourth-order Leray–Lions problem with indefinite weights, Complex Var. and Elliptic Equat.; DOI: 10.1080/17476933.2022.2056887. DOI: https://doi.org/10.1080/17476933.2022.2056887

S. Shokooh, Existence and multiplicity results for elliptic equations involving the $p$-Laplacian-like, Ann. Univ. Craiova Math. Comput. Sci. Ser., 44, 249–258 (2017).

S. Shokooh, A. Neirameh, Existence results of infinitely many weak solutions for $p(x)$-Laplacian-like operators, Politehn. Univ. Bucharest Sci. Bull. Ser. A, Appl. Math. Phys., 784, 95–104 (2016).

N. S. Papageorgiou, V. D. Rădulescu, D. D. Repovš, Nonlinear analysis – theory and methods, Springer Monogr. Math., Springer, Cham (2019). DOI: https://doi.org/10.1007/978-3-030-03430-6

P. Pucci, J. Serrin, A mountain pass theorem, J. Different. Equat., 60, 142–149 (1985). DOI: https://doi.org/10.1016/0022-0396(85)90125-1

V. D. Rădulescu, Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Anal., 121, 336–369 (2015). DOI: https://doi.org/10.1016/j.na.2014.11.007

V. D. Rădulescu, D. D. Repovš, Partial differential equations with variable exponents: variational methods and qualitative analysis, Chapman and Hall CRC, Taylor & Francis Group, Boca Raton, FL (2015).

K. Rajagopal, M. Ružička, Mathematical modelling of electrorheological fluids, Contin. Mech. Thermodyn., 13, 59–78 (2001). DOI: https://doi.org/10.1007/s001610100034

M. M. Rodrigues, Multiplicity of solutions on a nonlinear eigenvalue problem for $p(x)$-Laplacian-like operators, Mediterr. J. Math., 9, 211–223 (2012). DOI: https://doi.org/10.1007/s00009-011-0115-y

M. Ružička, Electrorheological fluids: modeling and mathematical theory, Lect. Notes Math., 1748, Springer, Berlin (2000). DOI: https://doi.org/10.1007/BFb0104030

V. V. Zhikov, Lavrentiev phenomenon and homogenization for some variational problems, C. R. Acad. Sci. Paris Sér. I. Math., 316, № 5, 435–439 (1993).

Q. M. Zhou, B. Ge, Three solutions for inequalities Dirichlet problem driven by $p(x)$-Laplacian-like, Abstr. and Appl Anal. (2013); http://dx.doi.org/10.1155/2013/575328. DOI: https://doi.org/10.1155/2013/575328

Published
04.09.2024
How to Cite
KefiK. “Multiple Solutions for a $p(x)$-Laplacian-Like Problem under Neumann Boundary Condition”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 8, Sept. 2024, pp. 1158 -67, doi:10.3842/umzh.v76i8.7575.
Section
Research articles