Ideal turbulence as a kind of distributed chaos: brief essay
Abstract
UDC 517.9+519.14
We outline the key points of the concept of ideal turbulence offering novel scenarios for distributed chaos, which are based not on the geometric-dynamical complexity of the attractor but on the extremely complex spatial structure of elements of the attractor. Ideal turbulence is observed in idealized (neglecting internal resistance) models of various processes related to electromagnetic or sound oscillations. This idealization significantly simplifies the analysis and, at the same time, in many cases, provides a quite adequate description of real processes.
References
A. N. Sharkovsky, „Dry'' turbulence, Proc. II Int. Workshop „Nonlinear and Turbulent Processes in Physics'' (Kiev, 1983), 3, 1621–1626 (1984).
E. Yu. Romanenko, A. N. Sharkovsky, Dynamical systems and simulation of turbulence}, Ukr. Math. J., 59, № 2, 229–242 (2007). DOI: https://doi.org/10.1007/s11253-007-0018-z
О. М. Шарковський, О. Ю. Романенко, Ідеальна турбулентність: фрактальні і стохастичні атрактори траєкторій в ідеалізованих моделях математичної фізики, Праці Інституту математики НАН України, 107 (2020).
A. N. Sharkovsky, E. Yu. Romanenko, Turbulence: ideal, Encyclopedia Nonlinear Sci., Routledge, New York and London (2005), p. 955–957.
E. Yu. Romanenko, A. N. Sharkovsky, Ideal turbulence phenomenon and transmission line with Chua's diode, Chapter 16 in Chaos, CNN, Memristors and Beyond, 202–210 (2013). DOI: https://doi.org/10.1142/9789814434805_0016
A. N. Sharkovsky, Ideal turbulence, Nonlinear Dynam., 44, 15–27 (2006). DOI: https://doi.org/10.1007/s11071-006-1931-7
A. N. Sharkovsky, Yu. L. Maistrenko, E. Yu. Romanenko, Difference equations and their applications, Ser. Math. and Appl., 250, Kluwer Acad. Publ., Dordrecht (1993). DOI: https://doi.org/10.1007/978-94-011-1763-0
Е. Ю. Романенко, Разностные уравнения с непрерывным аргументом, Праці Інституту математики НАН України, 100, (2014).
O. Romanenko, Continuous-time difference equations and distributed chaos modelling, Math. Lett., 8, № 1, 11–21 (2022). DOI: https://doi.org/10.11648/j.ml.20220801.12
O. Yu. Romanenko, O. M. Sharkovsky, Properties of the semigroup generated by a continuous interval map, Int. J. Math., Eng., Biol. and Appl. Comput., 1, № 2, 77–94 (2022). DOI: https://doi.org/10.31586/ijmebac.2022.468
E. Yu. Romanenko, A. N. Sharkovsky, M. B. Vereikina, Self-structuring and self-similarity in boundary value problems, Int. J. Bifurcation and Chaos, 5, № 5, 1407–1418 (1995). DOI: https://doi.org/10.1142/S0218127495001083
А. Н. Шарковский, Аттракторы траекторий и их бассейны, Наук. думка, Київ (2013).
A. N. Sharkovsky, E. Yu. Romanenko, Ideal turbulence: attractors of deterministic systems may lie in the space of random fields, Int. J. Bifurcation and Chaos, 2, № 1, 31–36 (1992). DOI: https://doi.org/10.1142/S0218127492000045
A. N. Sharkovsky, E. Yu. Romanenko, Difference equations and dynamical systems generated by certain classes of boundary value problems, Proc. Steklov Inst. Math., 244, 264–279 (2004).
A. N. Sharkovsky, Behavior of a mapping in the neighborhood of an atrracting set, Amer. Math. Soc. Transl., 97, № 2, 227–258 (1970). DOI: https://doi.org/10.1090/trans2/097/11
O. M. Sharkovsky, Descriptive theory of deterministic chaos, Ukr. Math. J., 74, № 12, 1950–1960 (2022). DOI: https://doi.org/10.1007/s11253-023-02180-z
A. A. Akbergenov, O. Yu. Romanenko, Visualization of the simplest scenarios of ideal turbulence, J. Math. Sci., 247, 223–237 (2020). DOI: https://doi.org/10.1007/s10958-020-04798-x
Copyright (c) 2024 Олена Романенко, Абдивалі Акбергенов
This work is licensed under a Creative Commons Attribution 4.0 International License.