Continual distribution for the Bryan – Pidduck equation


UDC 533.72

For a nonlinear kinetic Boltzmann equation, in the case of a rough spheres model, we construct an approximate solution in the form of a continual distribution with the global Maxwellians. We also obtain the sufficient conditions on the coefficient functions and the hydrodynamic parameters, which are included in the distribution and make considered error arbitrarily small.


S. Chapman, T. G. Cowling, The mathematical theory of non-uniform gases, Cambridge Univ. Press, Cambridge (1952).

G. H. Bryan, On the application of the determinantal relation to the kinetic theory of polyatomic gases, Rept. Brit. Assoc. Adv. Sci., 64, 102 – 106 (1894).

F. B. Pidduck, The kinetic theory of a special type of rigid molecule, Proc. Roy. Soc. Edinburgh Sect., A, 101, 101 – 110 (1922). DOI:

C. Cercignani, The Boltzman equation and its applications, Springer, New York (1988), DOI:

V. D. Gordevskij, E. S. Sazonova, Kontinual`ny`j analog bimodal`ny`kh raspredelenij, Teor. i mat. fizika, 171, № 3, 483 – 492 (2012).

V. D. Gordevskij, A. A. Gukalov, Vzaimodejstvie smerchevy`kh potokov v modeli Briana – Piddaka, Vestn. KhNU im. V. N. Karazina, Matematika, prikl. matematika i mekhanika, 990, № 64, 27 – 41 (2011).

V. D. Gordevskyy, Approximate Biflow solutions of the kinetic Bryan – Pidduck equation, Math. Methjds Appl. Sci., 23, 1121 – 1137 (2003),<1121::AID-MMA154>3.0.CO;2-A DOI:<1121::AID-MMA154>3.0.CO;2-A

V. D. Gordevskij, A. A. Gukalov, Maksvellovskie raspredeleniya v modeli sherokhovaty`kh sfer, Ukr. mat. zhurn., 63, № 5, 629 – 639 (2011).

V. D. Gordevskij, Dvukhpotokovoe raspredelenie s vintovy`mi modami, Teor. i mat. fizika, 126, № 2, 283 – 300 (2001).

How to Cite
Gordevskyy V. D., and Hukalov O. O. “Continual Distribution for the Bryan – Pidduck Equation”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, no. 11, Nov. 2020, pp. 1487-94, doi:10.37863/umzh.v72i11.760.
Research articles