Hermite–Hadamard-type inequalities arising from tempered fractional integrals including twice-differentiable functions
Abstract
UDC 517.5
We propose a new method for the investigation of integral identities according to tempered fractional operators. In addition, we prove the midpoint-type and trapezoid-type inequalities by using twice-differentiable convex functions associated with tempered fractional integral operators. We use the well-known Hölder inequality and the power-mean inequality in order to obtain inequalities of these types. The resulting Hermite–Hadamard-type inequalities are generalizations of some investigations in this field, involving Riemann–Liouville fractional integrals.
References
A. Barani, S. Barani, S. S. Dragomir, Refinements of Hermite–Hadamard inequalities for functions when a power of the absolute value of the second derivative is $P$-convex, J. App. Math., 2012 (2012). DOI: https://doi.org/10.1155/2012/615737
H. Budak, H. Kara, F. Hezenci, M. Z. Sarikaya, New parameterized inequalities for twice differentiable functions, Filomat, 37, № 12 (2023). DOI: https://doi.org/10.2298/FIL2312737B
H. Budak, F. Ertugral, E. Pehlivan, Hermite–Hadamard type inequalities for twice differantiable functions via generalized fractional integrals, Filomat, 33, № 15, 4967–4979 (2019). DOI: https://doi.org/10.2298/FIL1915967B
R. G. Buschman, Decomposition of an integral operator by use of Mikusinski calculus, SIAM J. Math. Anal., 3, 83–85 (1972). DOI: https://doi.org/10.1137/0503010
S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11, № 5, 91–95 (1998). DOI: https://doi.org/10.1016/S0893-9659(98)00086-X
F. Hezenci, H. Budak, H. Kara, New version of fractional simpson type inequalities for twice differentiable functions, Adv. Difference Equat., 2021, Article 460 (2021). DOI: https://doi.org/10.1186/s13662-021-03615-2
R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore (2000). DOI: https://doi.org/10.1142/9789812817747
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Sci. B. V., Amsterdam (2006).
C. Li, W. Deng, L. Zhao, Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations, Discrete and Contin. Dyn. Syst. Ser. B, 24, 1989–2015 (2019). DOI: https://doi.org/10.3934/dcdsb.2019026
H. Kavurmaci, M. Avci, M. E. Ozdemir, New inequalities of Hermite–Hadamard type for convex functions with applications, J. Inequal. and Appl., 2011, № 1, 1–11 (2011). DOI: https://doi.org/10.1186/1029-242X-2011-86
M. M. Meerschaert, A. Sikorskii, Stochastic models for fractional calculus, De Gruyter Stud. Math., 43 (2012). DOI: https://doi.org/10.1515/9783110258165
M. M. Meerschaert, F. Sabzikar, J. Chen, Tempered fractional calculus, J. Comput. Phys., 293, 14–28 (2015). DOI: https://doi.org/10.1016/j.jcp.2014.04.024
P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the generalized Hermite–Hadamard Inequalities via the tempered fractional integrals, Symmetry, 12, № 4, Article 595 (2020). DOI: https://doi.org/10.3390/sym12040595
P. O. Mohammed, M. Z. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. and Appl. Math., Article 372 (2020). DOI: https://doi.org/10.1016/j.cam.2020.112740
J. E. Pecaric, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Math. Sci. and Eng., 187, Academic Press, Inc., Boston, MA (1992).
I. Podlubny, Fractional differential equations, Academic Press, San Diego (1999).
J. Park, On some integral inequalities for twice differentiable quasi-convex and convex functions via fractional integrals, Appl. Math. Sci., 9, № 62, 3057–3069 (2015). DOI: https://doi.org/10.12988/ams.2015.53248
M. Z. Sarikaya, N. Aktan, On the generalization of some integral inequalities and their applications, Math. and Comput. Modelling, 54, № 9-10, 2175–2182 (2011). DOI: https://doi.org/10.1016/j.mcm.2011.05.026
M. Z. Sarikaya, H. Budak, Some Hermite–Hadamard type integral inequalities for twice differentiable mappings via fractional integrals, Facta Univ. Ser. Math. and Inform., 29, № 4, 371–384 (2014).
M. Z. Sarikaya, M. E. Kiris, Some new inequalities of Hermite–Hadamard type for s-convex functions, Miskolc Math. Notes, 16, № 1, 491–501 (2015). DOI: https://doi.org/10.18514/MMN.2015.1099
S. Samko, A. Kilbas, O. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach, London (1993).
M. Z. Sarikaya, E. Set, M. E. Ozdemir, S. S. Dragomir, New some Hadamard's type inequalities for coordinated convex functions, Tamsui Oxford J. Inform. and Math. Sci., 28, № 2, 137–152 (2012).
M. Z. Sarikaya, A. Saglam, H. Yildirim, New inequalities of Hermite–Hadamard type for functions whose second derivatives absolute values are convex and quasi-convex, Int. J. Open Problems Comput. Sci. and Math., 5, № 3, 2074–2827 (2012). DOI: https://doi.org/10.12816/0006114
H. M. Srivastava, R. G. Buschman, Convolution integral equations with special function kernels, John Wiley & Sons, New York (1977).
V. Stojiljkovic, S. Dragomir, Differentiable Ostrowski type tensorial norm inequality for continuous functions of selfadjoint operators in Hilbert spaces, Gulf J. Math., 15, № 2, 40–55 (2023); https://doi.org/10.56947/ gjom.v15i2.1247. DOI: https://doi.org/10.56947/gjom.v15i2.1247
M. Tomar, E. Set, M. Z. Sarıkaya, Hermite–Hadamard type Riemann–Liouville fractional integral inequalities for convex functions, AIP Conf. Proc., 1726, № 1, 020035 (2016). DOI: https://doi.org/10.1063/1.4945861
Z. Tomovski, Generalized Cauchy type problems for nonlinear fractional differential equations with composite fractional derivative operator, Nonlinear Anal., 75, 3364–3384 (2012). DOI: https://doi.org/10.1016/j.na.2011.12.034
X. You, F. Hezenci, H. Budak, H. Kara, New Simpson type inequalities for twice differentiable functions via generalized fractional integrals, AIMS Math., 7, № 3, 3959–3971 (2021). DOI: https://doi.org/10.3934/math.2022218
Copyright (c) 2024 fatih HEZENCİ, Huseyin Budak, Muhammad Amer Latif
This work is licensed under a Creative Commons Attribution 4.0 International License.