Multiple fast homoclinic solutions for a class of second-order differential systems with $p$-Laplacian
Abstract
UDC 517.9
We study the existence of multiple fast homoclinic solutions for a class of second-order differential systems with $p$-Laplacian by using the minimax methods in the critical-point theory.
References
R. P. Agrawal, P. Chen, X. Tang, Fast homoclinic solutions for a class of damped vibration problems, Appl. Math. and Comput., 219, Go53-Go65 (2013).
P. Chen, X. H. Tang, Fast homoclinic solutions for a class of damped vibration problems with sub-quadratic potentials, Math. Nachr., 286, № 1, 4-16 (2013). DOI: https://doi.org/10.1002/mana.201100287
V. Coti-Zelati, P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4, № 4, 693-724 (1991). DOI: https://doi.org/10.2307/2939286
Y. H. Ding, Existence and multiplicity results for homoclinic solutions for a class of Hamiltonian systems, Nonlinear Anal., 25, 1095-1113 (1995). DOI: https://doi.org/10.1016/0362-546X(94)00229-B
Y. H. Ding, C. Lee, Homoclinics for asymptotically quadratic and superquadratic Hamiltonian systems, Nonlinear Anal., 71, № 5-6, 1395-1413 (2009). DOI: https://doi.org/10.1016/j.na.2008.10.116
M. Izydorek, J. Janczewska, Homoclinic solutions for a class of second order Hamiltonian systems, J. Different. Equat., 219, 375-389 (2005). DOI: https://doi.org/10.1016/j.jde.2005.06.029
W. Jiang, Q. Zhang, Multiple homoclinic solutions for superquadratic Hamiltonian systems, Electron. J. Different. Equat., 2016, № 66, 1-12 (2016).
F. Khelifi, M. Timoumi, Even homoclinic orbits for a class of damped vibration systems, Indag. Math., 28, 1111-1125 (2017). DOI: https://doi.org/10.1016/j.indag.2017.08.002
X. Y. Lin, X. H. Tang, Infinitely many homoclinic orbits of second-order $p$-Laplacian systems, Taiwan. J. Math., 17, № 4, 1371-1393 (2013). DOI: https://doi.org/10.11650/tjm.17.2013.2518
S. P. Lu, Homoclinic solutions for a nonlinear second order differential system with $p$-Laplacian operator, Nonlinear Anal., 12, № 1, 525-534 (2011). DOI: https://doi.org/10.1016/j.nonrwa.2010.06.037
X. Lv, S. P. Lu, Homoclinic solutions for ordinary $p$-Laplacian systems, Appl. Math. and Comput., 218, № 9, 5682-5692 (2012). DOI: https://doi.org/10.1016/j.amc.2011.11.065
P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A, 114, 33-38 (1990). DOI: https://doi.org/10.1017/S0308210500024240
P. H. Rabinowitz, K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206, 473-499 (1990). DOI: https://doi.org/10.1007/BF02571356
X. B. Shi, Q. F. Zhang, Q. M. Zhang, Existence of homoclinic orbits for a class of $p$-Laplacian systems in a weighted Sobolev space, Bound. Value Probl., 2013, Article 137 (2013). DOI: https://doi.org/10.1186/1687-2770-2013-137
X. H. Tang, Infinitely many homoclinic solutions for second-order Hamiltonian systems, Math. Nachr., 289, № 1, 116-127 (2016). DOI: https://doi.org/10.1002/mana.201200253
L. L. Wan, C. L. Tang, Existence and multiplicity of homoclinic orbits for second order Hamiltonian systems without (AR) condition, Discrete and Contin. Dyn. Syst. Ser. B, 15, № 1, 255-271 (2011). DOI: https://doi.org/10.3934/dcdsb.2011.15.255
D. L. Wu, X. P Wu, C. L Tang, Subharmonic and homoclinic solutions for second order Hamiltonian systems with new superquadratic conditions, cloos solutions, Fractals (2015).
X. H. Tang, Li Xiao, Homoclinic solutions for ordinary $p$-Laplacian systems with a coercive potential, Nonlinear Anal., 71, № 3-4, 1124-1133 (2009). DOI: https://doi.org/10.1016/j.na.2008.11.027
Q. F. Zhang, X. H. Tang, Existence of homoclinic orbits for a class of asymptotically $p$-Laplacian a periodic $p$-Laplacian systems, Appl. Math. and Comput., 2018, № 13, 7164-7173 (2012). DOI: https://doi.org/10.1016/j.amc.2011.12.084
M. Timoumi, Existence and multiplicity of fast homoclinic solutions for a class of damped vibration problems, J. Nonlinear Fund. Anal., 2016, Article ID9 (2016).
M. Timoumi, Ground state homoclinic orbits of a class of superquadratic damped vibration problems, Comm. Optim. Theory, 2017, Article ID29 (2017). DOI: https://doi.org/10.23952/cot.2017.29
M. Timoumi, Infinitely many fast homoclinic solutions for damped vibration systems with locally defined potentials, Comm. Optim. Theory, 2018, Article ID 20 (2018).
M. Timoumi, On ground-state homoclinic orbits of class of superquadratic damped vibration systems, Mediterr. J. Math., 1-20 (2018). DOI: https://doi.org/10.1007/s00009-018-1097-9
S. Tersian, On symmetric positive homoclinic solutions of semilinear $p$-Laplacian differential equations, Bound. Value Probl., 2012, Article 121 (2012). DOI: https://doi.org/10.1186/1687-2770-2012-121
R. Yuan, Z. Zhang, Fast homoclinic solutions for some second order non-autonomous systems, J. Math. Anal., 376, 51-63 (2011). DOI: https://doi.org/10.1016/j.jmaa.2010.11.034
Z. Zhang, R. Yuan, Homoclinic solutions for $p$-Laplacian Hamiltonian systems with combined nonlinearities, Qual. Theory Dyn. Syst.; DOI 10. 1007 1-2346-016-0219-7(2016).
J. Yuang, F. B. Zhao, Infinitely many homoclinic orbits for the second order Hamiltonian systems with superquadratic potentials, Nonlinear Anal., 10, 1417-1423 (2009). DOI: https://doi.org/10.1016/j.nonrwa.2008.01.013
Z. Zhang, Existence of homoclinic solutions for second order Hamiltonian systems with general potentials, J. Appl. Math. and Comput., 44, 263-272 (2014). DOI: https://doi.org/10.1007/s12190-013-0692-y
Copyright (c) 2024 Wafa Selmi
This work is licensed under a Creative Commons Attribution 4.0 International License.