Multiple fast homoclinic solutions for a class of second-order differential systems with $p$-Laplacian
Abstract
UDC 517.9
We study the existence of multiple fast homoclinic solutions for a class of second-order differential systems with $p$-Laplacian by using the minimax methods in the critical-point theory.
References
R. P. Agrawal, P. Chen, X. Tang, Fast homoclinic solutions for a class of damped vibration problems, Appl. Math. and Comput., 219, Go53-Go65 (2013).
P. Chen, X. H. Tang, Fast homoclinic solutions for a class of damped vibration problems with sub-quadratic potentials, Math. Nachr., 286, № 1, 4-16 (2013).
V. Coti-Zelati, P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4, № 4, 693-724 (1991).
Y. H. Ding, Existence and multiplicity results for homoclinic solutions for a class of Hamiltonian systems, Nonlinear Anal., 25, 1095-1113 (1995).
Y. H. Ding, C. Lee, Homoclinics for asymptotically quadratic and superquadratic Hamiltonian systems, Nonlinear Anal., 71, № 5-6, 1395-1413 (2009).
M. Izydorek, J. Janczewska, Homoclinic solutions for a class of second order Hamiltonian systems, J. Different. Equat., 219, 375-389 (2005).
W. Jiang, Q. Zhang, Multiple homoclinic solutions for superquadratic Hamiltonian systems, Electron. J. Different. Equat., 2016, № 66, 1-12 (2016).
F. Khelifi, M. Timoumi, Even homoclinic orbits for a class of damped vibration systems, Indag. Math., 28, 1111-1125 (2017).
X. Y. Lin, X. H. Tang, Infinitely many homoclinic orbits of second-order $p$-Laplacian systems, Taiwan. J. Math., 17, № 4, 1371-1393 (2013).
S. P. Lu, Homoclinic solutions for a nonlinear second order differential system with $p$-Laplacian operator, Nonlinear Anal., 12, № 1, 525-534 (2011).
X. Lv, S. P. Lu, Homoclinic solutions for ordinary $p$-Laplacian systems, Appl. Math. and Comput., 218, № 9, 5682-5692 (2012).
P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A, 114, 33-38 (1990).
P. H. Rabinowitz, K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206, 473-499 (1990).
X. B. Shi, Q. F. Zhang, Q. M. Zhang, Existence of homoclinic orbits for a class of $p$-Laplacian systems in a weighted Sobolev space, Bound. Value Probl., 2013, Article 137 (2013).
X. H. Tang, Infinitely many homoclinic solutions for second-order Hamiltonian systems, Math. Nachr., 289, № 1, 116-127 (2016).
L. L. Wan, C. L. Tang, Existence and multiplicity of homoclinic orbits for second order Hamiltonian systems without (AR) condition, Discrete and Contin. Dyn. Syst. Ser. B, 15, № 1, 255-271 (2011).
D. L. Wu, X. P Wu, C. L Tang, Subharmonic and homoclinic solutions for second order Hamiltonian systems with new superquadratic conditions, cloos solutions, Fractals (2015).
X. H. Tang, Li Xiao, Homoclinic solutions for ordinary $p$-Laplacian systems with a coercive potential, Nonlinear Anal., 71, № 3-4, 1124-1133 (2009).
Q. F. Zhang, X. H. Tang, Existence of homoclinic orbits for a class of asymptotically $p$-Laplacian a periodic $p$-Laplacian systems, Appl. Math. and Comput., 2018, № 13, 7164-7173 (2012).
M. Timoumi, Existence and multiplicity of fast homoclinic solutions for a class of damped vibration problems, J. Nonlinear Fund. Anal., 2016, Article ID9 (2016).
M. Timoumi, Ground state homoclinic orbits of a class of superquadratic damped vibration problems, Comm. Optim. Theory, 2017, Article ID29 (2017).
M. Timoumi, Infinitely many fast homoclinic solutions for damped vibration systems with locally defined potentials, Comm. Optim. Theory, 2018, Article ID 20 (2018).
M. Timoumi, On ground-state homoclinic orbits of class of superquadratic damped vibration systems, Mediterr. J. Math., 1-20 (2018).
S. Tersian, On symmetric positive homoclinic solutions of semilinear $p$-Laplacian differential equations, Bound. Value Probl., 2012, Article 121 (2012).
R. Yuan, Z. Zhang, Fast homoclinic solutions for some second order non-autonomous systems, J. Math. Anal., 376, 51-63 (2011).
Z. Zhang, R. Yuan, Homoclinic solutions for $p$-Laplacian Hamiltonian systems with combined nonlinearities, Qual. Theory Dyn. Syst.; DOI 10. 1007 1-2346-016-0219-7(2016).
J. Yuang, F. B. Zhao, Infinitely many homoclinic orbits for the second order Hamiltonian systems with superquadratic potentials, Nonlinear Anal., 10, 1417-1423 (2009).
Z. Zhang, Existence of homoclinic solutions for second order Hamiltonian systems with general potentials, J. Appl. Math. and Comput., 44, 263-272 (2014).
Copyright (c) 2024 Wafa Selmi
This work is licensed under a Creative Commons Attribution 4.0 International License.