Fractal embedded boxes of bifurcations

  • Christian Mira Groupe d'Etude des Systèmes Non Linéaire et Applications, INSA Toulouse, France
Keywords: EMBEDDED BOXE, BIFURCATION

Abstract

UDC 517.9

This descriptive text is essentially based on the Sharkovsky's and Myrberg's publications on the ordering of periodic solutions (cycles) generated by a ${\rm Dim\,}1$ unimodal smooth map $f(x,\lambda).$  Taking as an example $f(x,\lambda)=x^{2}-\lambda,$  it was shown in a paper published in1975 that the bifurcations are organized in the form of a sequence of well-defined fractal embedded ``boxes'' (parameter $\lambda$ intervals), each of which is associated with a basic cycle of period $k$ and a symbol $j$ permitting to distinguish cycles with the same period $k.$ Without using the denominations Intermittency (1980) and Attractors in Crisis (1982), this new text shows that the notion of fractal embedded ``boxes'' describes the properties of each of these two situations as the limit of a sequence of well-defined boxes $(k, j)$ as $k\rightarrow\infty.$

References

P. Collet, J. P. Eckmann, Iterated maps of the interval as dynamical systems, Progress on Physics, Birkhäuser, Boston (1980).

J. Couot, C. Mira, Densités de mesures invariantes non classiques, Compt. Rend. Acad. Sci. Paris, Sér. 1, 296, 233–236 (1983).

H. El Hamouly, C. Mira, Singularités dues au feuilletage du plan des bifurcations d'un difféomorphisme bi-dimensionnel, Compt. Rend. Acad. Sci. Paris, Sér. 1, 294, 387–390 (1982).

H. El Hamouly, Structure des bifurcations d'un difféomorphisme bi-dimensionnel, Thèse de Docteur-Ingénieur (Math. Appl.), № 799, Univ. Paul Sabatier Toulouse (1982).

P. Fatou, Mémoire sur les équations fonctionnelles, Bull. Soc. Math. France, 47, 161–271 (1919).

P. Fatou, Mémoire sur les équations fonctionnelles, Bull. Soc. Math. France, 48, 33–94 and 208–314 (1920).

M. J. Feigenbaum, Quantitative universality for a class of nonlinear transformations}. J. Stat. Phys., 19, № 1, 25–52 (1978).

C. Grebogi, E. Ott, J. A. Yorke, Chaotic attractors in crisis, Phys. Rev. Lett., 48, № 22, 1507–1510 (1982).

J. Guckenheimer, One dimensional dynamics, Ann. New York Acad. Sci., 357, 343–347 (1980).

I. Gumowski, C. Mira, Accumulations de bifurcations dans une récurrence, C. R. Acad. Sci. Paris, Sér. A, 281, 45–48 (1975).

I. Gumowski, C. Mira, Dynamique chaotique. Transformations ponctuelles. Transition, ordre-désordre, Ed. Cépadues, Toulouse (1980).

I. Gumowski, C. Mira, Recurrences and discrete dynamic systems, Lecture Notes Math., 809, Springer (1980).

G. Julia, Mémoire sur l'itération des fonctions rationnelles, J. Math. Pures et Appl., 4, № 1, 7ème série, 47–245 (1918).

H. Kawakami, Algorithme optimal définissant les suites de rotation de $y_{n+1}= y_{n}^{2}-λ$, Notion de cycle adjoint, C.~R. Acad. Sci. Paris, Sér. 1, 301, № 12, 643–648 (1985).

H. Kawakami, Table of rotation sequences of $x_{n+1} = x_{n}^{2}-λ$, Summer Symposium on Dynamical Systems in Japan (Proceedings World Scientific) (1986).

E. N. Lorenz, Compound windows of the Henon-map, Physica D, 237, 1689–1704 (2008).

N. Metropolis, M. L. Stein, P. R. Stein, On finite limit sets for transformation of on the unit interval, J. Combin. Theory, 15, № 1, 25–44 (1973).

C. Mira, Accumulations de bifurcations et structures boîtes emboîtées dans les récurrences, ou transformations ponctuelles, Proceedings of the VIIth International Conference on Nonlinear Oscillations (ICNO), Berlin, Sept. 1975, Akad. Verlag, Berlin (1977), p.~81–93.

C. Mira, Sur la notion de frontière floue de stabilité, Proceedings of the third Brazilian Congress of Mechanical Engineering, Rio de Janeiro, Dec. (1975).

C. Mira, Sur la double interprétation, déterministe et statistique, de certaines bifurcations complexes, C. R. Acad. Sci. Paris, Sér. A, 283, 911–914 (1976).

C. Mira, Frontière floue séparant les domaines d'attraction de deux attracteurs, Compt. Rend. Acad. Sci. Paris, Sér. A, 288, 591–594 (1979).

C. Mira, Sur les points d'accumulation de boîtes appartenant à une strucure boîtes emboitées d'un endomorphisme uni dimensionel, C. R. Acad. Sci. Paris, Sér. I, 295, 13–16 (1982).

C. Mira, Chaotic dynamics. From the one-dimensional endomorphism to the two-dimensional difféomorphism, World Sci. (1987).

C. Mira, L. Gardini, A. Barugola, J. C. Cathala, Chaotic dynamics in two-dimensional noninvertible maps, World Sci. Ser. Nonlinear Sci. Ser.~A, 20 (1996).

C. Mira, I. Gumowski and a Toulouse research group in the ``prehistoric'' times of chaotic dynamics, Chapter 8 of: The chaos avant-garde. Memories of the early days of chaos theory (R. Abraham and Y. Ueda, Eds.), World Sci. Ser. Nonlinear Sci. Ser. A, 39 (2000).

C. Mira, Noninvertible maps, Publ. on the Website ``Scholarpedia'', 2(9), Article~2328 (2007).

C. Mira, L. Gardini, From the box-within-a-box bifurcation organization to the Julia set. Part II, Bifurcation routes to different Julia sets from an indirect embedding of a quadratic complex map, Int. J. Bifur. and Chaos, 19, № 10, 3235–3282 (2009).

C. Mira, Shrimp fishing, or searching for foliation singularities of the parameter plane. Part I, Basic elements of the parameter plane foliation, Research Gate Article (2016).

C. Mira, About intermittency and its different aproaches, Research Gate Article (2019).

C. Mira, About two aproaches of chaotic attractors in crisis, Research Gate Article (2019).

M. Misiurewicz, Absolutely continuous measures for certain maps of the interval, Publ. Math. Inst. Hautes Études Sci., 53, 17–51 (1981).

P. J. Myrberg, Iteration von Quadratwurzeloperationen, Ann. Acad. Sci. Fenn. Math., 259, (1958).

P. J. Myrberg, Iteration der reellen Polynome zweiten Grades II, Ann. Acad. Sci. Fenn. Math., 268, (1959).

P. J. Myrberg, Iteration der reellen Polynome zweiten Grades III, Ann. Acad. Sci. Fenn. Math., 336, 1–10 (1963).

Y. Pomeau, P. Manneville, Intermittent transition to turbulence in dissipative dynamical systems, Commun. Math. Phys., 74, 189–197 (1980).

C. P. Pulkin, Oscillating iterated sequences} (in Russian), Dokl. Akad. Nauk SSSR, 73, № 6, 1129–1132 (1950).

A. N. Sharkovsky, Coexistence of cycles of a continuous map of a line into itself} (in Russian), Ukr. Math. J., 16, № 1, 61–71 (1964).

T.-Y. Li, J. A. Yorke, Period 3 implies chaos, Amer. Math. Monthly, 82, № 10, 985–992 (1975).

Published
02.02.2024
How to Cite
Mira, C. “Fractal Embedded Boxes of Bifurcations”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 1, Feb. 2024, pp. 75 -91, doi:10.3842/umzh.v76i1.7661.
Section
Research articles