On the solution manifolds for algebraic-delay systems
Abstract
UDC 517.9
Differential equations with state-dependent delays specify a semiflow of continuously differentiable solution operators, in general, only on an associated submanifold of the Banach space $C^1([-h,0],R^n).$ We extend a recent result on the simplicity of these {\it solution manifolds} to systems in which the delay is given by the state only implicitly in an extra equation. These algebraic delay systems appear in various applications.
References
T. Gedeon, A. R. Humphries, M. C. Mackey, H.-O. Walther,
Z. (W.) Wang, Operon dynamics with state-dependent transcription and/or translation delays, J. Math. Biol., 84, Article 2 (2022); https://doi.org/10.1007/s00825-021-01963-0. DOI: https://doi.org/10.1007/s00285-021-01693-0
F. Hartung, T. Krisztin, H.-O. Walther, J. Wu, Functional differential equations with state-dependent delays: theory and applications, Handbook of Differential Equations, Ordinary Differential Equations, 3, 435–545 (2006); https://doi.org/10.1016/S1874-5725(06)80009-X. DOI: https://doi.org/10.1016/S1874-5725(06)80009-X
T. Krisztin, A. Rezounenko, Parabolic partial differential equations with discrete state-dependent delay: classical solutions and solution manifold, J. Different. Equat., 260, 4454–4472 (2016); https://doi.org/10.1016/j.jde.2015.11.018. DOI: https://doi.org/10.1016/j.jde.2015.11.018
T. Krisztin, H.-O. Walther, Solution manifolds of differential systems with discrete state-dependent delays are almost graphs, Discrete and Contin. Dyn. Syst., 43, 2973–2984 (2023); https://doi.org/10.3934/dcds.20233036. DOI: https://doi.org/10.3934/dcds.2023036
J. Mallet-Paret, R. D. Nussbaum, P. Paraskevopoulos, Periodic solutions for functional differential equations with multiple state-dependent time lags, Topol. Methods Nonlinear Anal., 3, 101–162 (1994); https://doi.org/10.12775/TMNA.1994.006. DOI: https://doi.org/10.12775/TMNA.1994.006
H.-O. Walther, The solution manifold and $C^1$-smoothness for differential equations with state dependent delay, J. Different. Equat., 195, 46–65 (2003); https://doi.org/10.1016/j/jde.2003.07.001. DOI: https://doi.org/10.1016/j.jde.2003.07.001
H.-O. Walther, Stable periodic motion of a system using echo for position control, J. Dynam. Different. Equat., 15, 143–223 (2003). DOI: https://doi.org/10.57262/die/1356060779
H.-O. Walther, On a model for soft landing with state-dependent delay, J. Dynam. Different. Equat., 19, 593–622 (2007). DOI: https://doi.org/10.1007/s10884-006-9064-8
H.-O. Walther, A periodic solution of a differential equation state-dependent delay, J. Different. Equat., 244, 1910–1945 (2008). DOI: https://doi.org/10.1016/j.jde.2008.02.001
H.-O. Walther, Algebraic-delay differential systems, state-dependent delay, and temporal order of reactions, J. Dynam. Different. Equat., 21, 195–232 (2009). DOI: https://doi.org/10.1007/s10884-009-9129-6
H.-O. Walther, A finite atlas for solution manifolds of differential systems with discrete state-dependent delays, Different. and Integral Equat., 35, 241–276 (2022). DOI: https://doi.org/10.57262/die035-0506-241
H.-O. Walther, Solution manifolds which are almost graphs, J. Different. Equat., 293, 226–248 (2021); https://doi.org/10.1016/j.jde.2021.05.024. DOI: https://doi.org/10.1016/j.jde.2021.05.024
E. Winston, Uniqueness of the zero solution for differential equations with state-dependence, J. Different. Equat., 7, 395–405 (1970). DOI: https://doi.org/10.1016/0022-0396(70)90118-X
Copyright (c) 2024 Hans-Otto Walther
This work is licensed under a Creative Commons Attribution 4.0 International License.