Periods of self-maps on S2 via their homology

Authors

  • Jaume Llibre Departament de Matemàtiques, Universitat Autònoma de Barcelona, Spain

DOI:

https://doi.org/10.3842/umzh.v76i1.7668

Keywords:

Self-maps of the 2-dimensional sphere, set of periods, periodic points, Lefschetz numbers

Abstract

UDC 517.9

As usual, we denote а 2-dimensional sphere  by S2. We study the periods of  periodic orbits of the maps f:S2S2 that are either continuous or C1 with all their periodic orbits being hyperbolic, or transverse, or holomorphic, or transverse holomorphic. For the first time, we summarize all  known results on the periodic orbits of these distinct kinds of self-maps on S2 together. We note that every time when a map f:S2S2 increases its structure, the number of  periodic orbits provided by its action on the homology increases.

References

I. N. Baker, Fix points of polynomials and rational functions, J. London Math. Soc., 39, 615–622 (1964). DOI: https://doi.org/10.1112/jlms/s1-39.1.615

R. F. Brown, The Lefschetz fixed point theorem, Scott, Foresman and Company, Glenview, IL (1971).

N. Fagella, J. Llibre, Periodic points of holomorphic maps via Lefstchetz numbers, Trans. Amer. Math. Soc., 352, 4711–4730 (2000). DOI: https://doi.org/10.1090/S0002-9947-00-02608-8

J. L. Garcia-Guirao, J. Llibre, C1 self-maps on Sn, Sn×Sm, CPn and HPn with all their periodic orbits hyperbolic, Taiwanese J. Math., 16, 323–334 (2012). DOI: https://doi.org/10.11650/twjm/1500406543

J. L. Garcia-Guirao, J. Llibre, Periodic structure of fransversal maps on CPn, HPn and Sp×Sq, Qual. Theory Dyn. Syst., 12, 417–425 (2013). DOI: https://doi.org/10.1007/s12346-013-0099-z

J. L. Garcia-Guirao, J. Llibre, Periods of continuous maps on some compact spaces, J. Difference Equat. and Appl., 23, 1–7 (2017). DOI: https://doi.org/10.1080/10236198.2017.1304932

T. Y. Li, J. A. Yorke, Period three implies chaos, Amer. Math. Monthly, 82, № 10, 985–992 (1975). DOI: https://doi.org/10.1080/00029890.1975.11994008

J. Llibre, Lefschetz numbers for periodic points, Contemp. Math., 152, 215–227 (1993). DOI: https://doi.org/10.1090/conm/152/01325

J. Llibre, A note on the set of periods of transversal homological sphere self-maps, J. Difference Equat. and Appl., 9, 417–422 (2003). DOI: https://doi.org/10.1080/1023619021000047833

A. N. Sharkovsky, Coexistence of the cycles of a continuous mapping of the line into itself} (in Russian), Ukr. Math. Zh., 16, № 1, 61–71 (1964).

J. W. Vick, Homology theory, 2nd ed., Springer-Verlag (1994). DOI: https://doi.org/10.1007/978-1-4612-0881-5

Published

02.02.2024

Issue

Section

Research articles

How to Cite

Llibre, Jaume. “Periods of Self-Maps on S2 via Their Homology”. Ukrains’kyi Matematychnyi Zhurnal, vol. 76, no. 1, Feb. 2024, pp. 72-74, https://doi.org/10.3842/umzh.v76i1.7668.