Periods of self-maps on $\rm S^2$ via their homology
Abstract
UDC 517.9
As usual, we denote а $2$-dimensional sphere by $\rm S^2$. We study the periods of periodic orbits of the maps $f\colon \rm S^2 \rightarrow \rm S^2$ that are either continuous or $C^1$ with all their periodic orbits being hyperbolic, or transverse, or holomorphic, or transverse holomorphic. For the first time, we summarize all known results on the periodic orbits of these distinct kinds of self-maps on $\rm S^2$ together. We note that every time when a map $f\colon \rm S^2 \rightarrow \rm S^2$ increases its structure, the number of periodic orbits provided by its action on the homology increases.
References
I. N. Baker, Fix points of polynomials and rational functions, J. London Math. Soc., 39, 615–622 (1964). DOI: https://doi.org/10.1112/jlms/s1-39.1.615
R. F. Brown, The Lefschetz fixed point theorem, Scott, Foresman and Company, Glenview, IL (1971).
N. Fagella, J. Llibre, Periodic points of holomorphic maps via Lefstchetz numbers, Trans. Amer. Math. Soc., 352, 4711–4730 (2000). DOI: https://doi.org/10.1090/S0002-9947-00-02608-8
J. L. Garcia-Guirao, J. Llibre, $C^{1}$ self-maps on $S^{n},$ $S^{n} × S^{m},$ $C$P$^{n}$ and $HP^{n}$ with all their periodic orbits hyperbolic, Taiwanese J. Math., 16, 323–334 (2012). DOI: https://doi.org/10.11650/twjm/1500406543
J. L. Garcia-Guirao, J. Llibre, Periodic structure of fransversal maps on $CP^n,$ $HP^n$ and $S^p × S^q$, Qual. Theory Dyn. Syst., 12, 417–425 (2013). DOI: https://doi.org/10.1007/s12346-013-0099-z
J. L. Garcia-Guirao, J. Llibre, Periods of continuous maps on some compact spaces, J. Difference Equat. and Appl., 23, 1–7 (2017). DOI: https://doi.org/10.1080/10236198.2017.1304932
T. Y. Li, J. A. Yorke, Period three implies chaos, Amer. Math. Monthly, 82, № 10, 985–992 (1975). DOI: https://doi.org/10.1080/00029890.1975.11994008
J. Llibre, Lefschetz numbers for periodic points, Contemp. Math., 152, 215–227 (1993). DOI: https://doi.org/10.1090/conm/152/01325
J. Llibre, A note on the set of periods of transversal homological sphere self-maps, J. Difference Equat. and Appl., 9, 417–422 (2003). DOI: https://doi.org/10.1080/1023619021000047833
A. N. Sharkovsky, Coexistence of the cycles of a continuous mapping of the line into itself} (in Russian), Ukr. Math. Zh., 16, № 1, 61–71 (1964).
J. W. Vick, Homology theory, 2nd ed., Springer-Verlag (1994). DOI: https://doi.org/10.1007/978-1-4612-0881-5
Copyright (c) 2024 Jaume Llibre
This work is licensed under a Creative Commons Attribution 4.0 International License.