Existence theory for $\psi$-Caputo fractional differential equations

  • Nadhir Bendrici Laboratory of Dynamic Systems, University of Science and Technology Houari Boumediene, Bab ezzouar, Algeria
  • Abdellatif Boutiara Department of Mathematics and Computer Science, University of Ghardaia, Algeria
  • Malika Boumedien-Zidani Laboratory of Dynamic Systems, University of Science and Technology Houari Boumediene, Bab ezzouar, Algeria
Keywords: -caputo - Fractional derivatives equations - Boundary value problem - M¨onch fixed point theorem, Measure of noncompactness, $\psi$-Caputo fractional differential equations, Boundary value problem, Monch fixed point theorem, Measure of non-compacteness

Abstract

UDC 517.9

The target of this paper is to handle a nonlocal boundary-value problem for a specific kind of nonlinear fractional differential equations encapsuling a collective fractional derivative known as the $\psi$-Caputo fractional operator. The applied fractional operator generated by the kernel is of the following kind: $k(t,s)=\psi (t)-\psi(s).$  The existence of the solutions of the above-mentioned equations is tackled by using Mönch's fixed-point theorem combined with the technique of measures of noncompactness. In addition, we discuss the problem of stability within the scope of the Ulam–Hyers stability criteria for the main fractional system.  Finally, an example is given to illustrate the viability of the reported results.

References

M. S. Abdo, T. Abdeljawad, S. M. Ali, K. Shah, F. Jarad, Existence of positive solutions for weighted fractional order differential equations, Chaos, Solitons and Fractals, 141, Article 110341 (2020).

M. S. Abdo, Further results on the existence of solutions for generalized fractional quadratic functional integral equations, J. Math. Anal. Model., 1, № 1, 33–46 (2020).

M. S. Abdo, A. G. Ibrahim, S. K. Panchal, Nonlinear implicit fractional differential equation involving $ψ $-Caputo fractional derivative, Proc. Jangjeon Math. Soc., 22, № 3, 387–400 (2019).

N. Adjimi, A. Boutiara, M. S. Abdo, M. Benbachir, Existence results for nonlinear neutral generalized Caputo fractional differential equations, J. Pseudo-Different. Oper. and Appl., 12, № 2, 1–17 (2021).

R. P. Agarwal, M. Meehan, D. O'Regan, Fixed point theory and applications, Cambridge Tracts in Mathematics, 141, Cambridge University Press, Cambridge (2001).

O. P. Agrawal, Some generalized fractional calculus operators and their applications in integral equations, Fract. Calc. and Appl. Anal., 15, № 4, 700–11(2012).

I. Ahmed, P. Kumam, T. Abdeljawad, F. Jarad, P. Borisut, M. A. Demba, W. Kumam, Existence and uniqueness results for $φ$-Caputo implicit fractional pantograph differential equation with generalized anti-periodic boundary condition, Adv. Different. Equat., 1, 1–19 (2020).

R. R. Akhmerov, M. I. Kamenskii, A. S. Patapov et al., Measures of noncompactness and condensing operators, Birkhäuser-Verlag, Basel (1992).

R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44, 460–481 (2017).

R. Almeida, Fractional differential equations with mixed boundary conditions, Bull. Malays. Math. Sci. Soc., 42, № 4, 1687–1697 (2019).

R. Almeida, A. B. Malinowska, M. T. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Meth. and Appl. Sci., 2018, № 41, 336–352 (2018).

J. Banas, K. Goebel, Measures of noncompactness in Banach spaces, Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York (1980).

M. Benchohra, J. R. Graef, S. Hamani, Existence results for boundary value problems with non-linear fractional differential equations, Appl. Anal., 87, 851–863 (2008).

A. Berhail, N. Tabouche, M. M. Matar, Jehad Alzabut, On nonlocal integral and derivative boundary value problem of nonlinear Hadamard–Langevin equation with three different fractional orders, Bol. Soc. Mat. Mexicana, 1–16 (2020).

A. Boutiara, M. S. Abdo, M. Benbachir, Existence results for $ψ$-Caputo fractional neutral functional integro-differential equations with finite delay, Turk. J. Math., 44, 2380–2401(2020).

A. Boutiara, S. Etemad, A. Hussain, S. Rezapour, The generalized U-H and U-H stability and existence analysis of a coupled hybrid system of integro-differential IVPs involving $φ$-Caputo fractional operators, Adv. Difference Equat., 95, 1–21 (2021); https://doi. org/10. 1186/s13662-021-03253-8.

A. Boutiara, Mixed fractional differential equation with nonlocal conditions in Banach spaces, J. Math. Model., 9, № 3, 451–463 (2021).

A. Boutiara, M. Benbachir, K. Guerbati, Measure of noncompactness for nonlinear Hilfer fractional differential equation in Banach spaces, Ikonion J. Math., 1, № 2, 55–67 (2019).

C. Derbazi, H. Hammouche, Caputo–Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory, AIMS Math., 5, № 3, 2694–2709 (2020).

R. Hilfer, Applications of fractional calculus in physics, World Sci., Singapore (2000).

F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Disc. Conti. Dyn. Sys.-S, 13, № 3, Article 709 (2020).

A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204. Elsevier Science B. V., Amsterdam (2006).

A. D. Mali, K. D. Kucche, Nonlocal boundary value problem for generalized Hilfer implicit fractional differential equations, Math. Methods Appl. Sci., 43, № 15, 8608–8631 (2020).

K. S. Miller, B. Ross, An introduction to the fractional calculus and differential equations, John Wiley, New York (1993).

H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal., 4, 985–999 (1980).

S. K. Ntouyas, D. Vivek, Existence and uniqueness results for sequential $ψ$-Hilfer fractional differential equations with multi-point boundary conditions, Acta Math. Univ. Comenianae, 1–15 (2021).

K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw., 41, Article 912 (2010).

I. Podlubny, Fractional differential equations, Academic Press, New York (1999).

S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, theory and applications, Gordon and Breach, Yverdon (1993).

W. Shatanawi, A. Boutiara, M. S. Abdo, M. B. Jeelani, K. Abodayeh, Nonlocal and multiple-point fractional boundary value problem in the frame of a generalized Hilfer derivative, Adv. Difference Equat., 1, 1–19 (2021).

J. V. D. C. Sousa, F. Jarad, T. Abdeljawad, Existence of mild solutions to Hilfer fractional evolution equations in Banach space, Ann. Funct. Anal., 12, № 1, 1–16 (2021).

S. Szufla, On the application of measure of noncompactness to existence theorems, Rend. Semin. Mat. Univ. Padova, 75, 1–14 (1986).

V. E. Tarasov, Fractional dynamics: application of fractional calculus to dynamics of particles, fields and media, Springer, Heidelberg and Higher Education Press, Beijing (2010).

Published
30.09.2024
How to Cite
BendriciN., BoutiaraA., and Boumedien-ZidaniM. “Existence Theory for $\psi$-Caputo Fractional Differential Equations”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 9, Sept. 2024, pp. 1291 -03, doi:10.3842/umzh.v76i9.7669.
Section
Research articles