Dynamics of one-dimensional maps and Gurtin–Maccamy's population model. Part I. Asymptotically constant solutions
Abstract
UDC 517.9
Motivated by the recent work by Ma and Magal [Proc. Amer. Math. Soc. (2021); https://doi.org/10.1090/proc/15629] on the global stability property of the Gurtin–MacCamy's population model, we consider a family of scalar nonlinear convolution equations with unimodal nonlinearities. In particular, we relate the Ivanov and Sharkovsky analysis of singularly perturbed delay differential equations in [https://doi.org/10.1007/978-3-642-61243-5_5] with the asymptotic behavior of solutions of the Gurtin–MacCamy's system. According the classification proposed in [https://doi.org/10.1007/978-3-642-61243-5_5], we can distinguish three fundamental kinds of continuous solutions of our equations, namely, solutions of the asymptotically constant type, relaxation type and turbulent type. We present various conditions assuring that all solutions belong to the first of these three classes. In the setting of unimodal convolution equations, these conditions suggest a generalized version of the famous Wright's conjecture.
References
M. Aguerrea, C. Gomez, S. Trofimchuk, On uniqueness of semi-wavefronts (Diekmann–Kaper theory of a nonlinear convolution equation re-visited), Math. Ann., 354, 73–109 (2012). DOI: https://doi.org/10.1007/s00208-011-0722-8
F. Brauer, Perturbations of the nonlinear renewal equation, Adv. Math., 22, 32–51 (1976). DOI: https://doi.org/10.1016/0001-8708(76)90136-5
K. Cooke, J. Yorke, Some equations modelling growth processes and gonorrhea epidemics, Math. Biosci., 16, 75–101 (1973). DOI: https://doi.org/10.1016/0025-5564(73)90046-1
O. Diekmann, H. Kaper, On the bounded solutions of a nonlinear convolution equation, Nonlinear Anal., 2, 721–737 (1978). DOI: https://doi.org/10.1016/0362-546X(78)90015-9
A. Ducrot, Q. Griette, Z. Liu, P. Magal, Differential equations and population dynamics I: Introductory approaches, Lect. Notes Math. Model. Life Sci., Springer Nature (2022). DOI: https://doi.org/10.1007/978-3-030-98136-5
F. Dumortier, J. Llibre, J. C. Artés, Qualitative theory of planar differential systems, Universitext, Springer-Verlag, New York (2006).
A. Ivanov, E. Liz, S. Trofimchuk, Halanay inequality, Yorke 3/2 stability criterion, and differential equations with maxima, Tohoku Math. J., 54, 277–295 (2002). DOI: https://doi.org/10.2748/tmj/1113247567
A. F. Ivanov, A. N. Sharkovsky, Oscillations in singularly perturbed delay equations, Dynamics Reported, vol. 1, Springer, Berlin, Heidelberg (1992); https://doi.org/10.1007/978-3-642-61243-5_5. DOI: https://doi.org/10.1007/978-3-642-61243-5_5
C. Gomez, H. Prado, S. Trofimchuk, Separation dichotomy and wavefronts for a nonlinear convolution equation, J. Math. Anal. and Appl., 420, 1–19 (2014). DOI: https://doi.org/10.1016/j.jmaa.2014.05.064
S. A. Gourley, R. Liu, Delay equation models for populations that experience competition at immature life stages, J. Different. Equat., 259, 1757–1777 (2015). DOI: https://doi.org/10.1016/j.jde.2015.03.012
G. Gripenberg, S. Londen, O. Staffans, Volterra integral and functional equations, Encyclopedia Math. and Appl., Cambridge Univ. Press, Cambridge (1990). DOI: https://doi.org/10.1017/CBO9780511662805
M. E. Gurtin, R. C. MacCamy, Non-linear age-dependent population dynamics, Arch. Ration. Mech. and Anal., 54, 281–300 (1974). DOI: https://doi.org/10.1007/BF00250793
K. P. Hadeler, J. Tomiuk, Periodic solutions of difference-differential equations, Arch. Ration. Mech. and Anal., 65, 82–95 (1977). DOI: https://doi.org/10.1007/BF00289359
M. A. Krasnoselskii, P. P. Zabreiko, Geometrical methods of nonlinear analysis, Grundlehren Math. Wiss., Ser. Comp. Stud. Math., 263, (1984). DOI: https://doi.org/10.1007/978-3-642-69409-7
E. Liz, Four theorems and one conjecture on the global asymptotic stability of delay differential equations, The First 60 Years of Nonlinear Analysis of Jean Mawhin (June 2004), p.~117–129. DOI: https://doi.org/10.1142/9789812702906_0010
E. Liz, V. Tkachenko, S. Trofimchuk, A global stability criterion for scalar functional differential equations, SIAM J. Math. Anal., 35, 596–622 (2003). DOI: https://doi.org/10.1137/S0036141001399222
E. Liz, M. Pinto, V. Tkachenko, S. Trofimchuk, A global stability criterion for a family of delayed population models, Quart. Appl. Math., 63, 56–70 (2005). DOI: https://doi.org/10.1090/S0033-569X-05-00951-3
S.-O. Londen, On the asymptotic behavior of the bounded solutions of a nonlinear Volterra equation, SIAM J. Math. Anal., 5, 849–875 (1974). DOI: https://doi.org/10.1137/0505082
S.-O. Londen, On a non-linear Volterra integral equation, J. Different. Equat., 14, 106–120 (1973). DOI: https://doi.org/10.1016/0022-0396(73)90080-6
Z. Ma, P. Magal, Global asymptotic stability for Gurtin–MacCamy's population dynamics model, Proc. Amer. Math. Soc. (2021); https://doi.org/10.1090/proc/15629. DOI: https://doi.org/10.1090/proc/15629
P. Magal, S. Ruan, Center manifolds for semilinear equations with non-dense domain and applications on Hopf bifurcation in age structured models, Mem. Amer. Math. Soc., 202, Article 951 (2009). DOI: https://doi.org/10.1090/S0065-9266-09-00568-7
P. Magal, S. Ruan, Theory and applications of abstract semilinear Cauchy problems, Appl. Math. Sci., vol. 201, Springer, Cham (2018). DOI: https://doi.org/10.1007/978-3-030-01506-0
J. Mallet-Paret, R. D. Nussbaum, Global continuation and asymptotic behavior for periodic solutions of a differential-delay equation, Ann. Mat. Pura ed Appl., 145, 33–128 (1986). DOI: https://doi.org/10.1007/BF01790539
S. Ruan, Delay differential equations in single species dynamics, Delay Differential Equations with Applications, NATO Sci. Ser. II, vol. 205, Springer, Berlin (2006), p. 477–517. DOI: https://doi.org/10.1007/1-4020-3647-7_11
A. N. Sharkovsky, S. F. Kolyada, A. G. Sivak, V. V. Fedorenko, Dynamics of one-dimensional maps, Mathematics and its Applications, 407, Kluwer Acad. Publ., Dordrecht (1997). DOI: https://doi.org/10.1007/978-94-015-8897-3
H. L. Smith, Monotone dynamical systems, Amer. Math. Soc., Providence (1995).
H. L. Smith, H. R. Thieme, Dynamical systems and population persistence, Grad. Stud. Math., vol.~189, Amer. Math. Soc., Providence, RI (2011).
J. Szarski, Differential inequalities, PWN, Warszawa (1965).
J. B. van den Berg, J. Jaquette, A proof of Wright's conjecture, J. Different. Equat., 264, 7412–7462 (2018). DOI: https://doi.org/10.1016/j.jde.2018.02.018
H.-O. Walther, The impact on mathematics of the paper ``Oscillation and chaos in physiological control systems'', by Mackey and Glass in Science (1977); arXiv:2001.09010 (2020).
G. F. Webb, Theory of nonlinear age-dependent population dynamics, Marcel Dekker, New York (1985).
Copyright (c) 2024 Сергій Іванович Трофімчук
This work is licensed under a Creative Commons Attribution 4.0 International License.