Some sharp Landau-Kolmogorov–Nagy-type inequalities in Sobolev spaces of multivariate functions

  • V. Babenko Dnipro National University named after Oles Honchar
  • V. Babenko Drake University, Des Moines, USA
  • O. Kovalenko Dnipro National University named after Oles Honchar
  • N. Parfinovych Dnipro National University named after Oles Honchar
Keywords: Nagy and Landau -- Kolmogorov type inequality, charge, gradient, mixed derivative

Abstract

UDC 517.5

For a function $f$ from the Sobolev space $W^{1,p}(C),$ where $C\subset R^d$ is an open convex cone, we establish a sharp inequality  estimating $\| f\|_{L_{\infty}}$ via the $L_{p}$-norm of its gradient and a seminorm of the function. With the help of this inequality, we prove a sharp inequality estimating the ${L_{\infty}}$-norm of the Radon-Nikodym derivative of a charge defined on Lebesgue measurable subsets of  $C$ via the $L_p$-norm of the gradient of this derivative and the seminorm of the charge.  In the case where $C=R_+^m\times R^{d-m},$ $0\le m\le d,$ we obtain inequalities estimating the ${L_{\infty}}$-norm of a mixed derivative of the function $f\colon C\to R$ via its ${L_{\infty}}$-norm and the $L_p$-norm of the gradient of mixed derivative of this function. 

References

E. Landau, Einige Ungleichungen für zweimal differenzierbare Funktion, Proc. London Math. Soc., 13, 43–49 (1913). DOI: https://doi.org/10.1112/plms/s2-13.1.43

А. Н. Колмогоров, О неравенствах между верхними гранями последовательных производных функции на бесконечном интервале, Уч. зап. МГУ. Математика, 30, № 3, 3–13 (1939).

B. Sz.-Nagy, Über Integralungleichungen zwischen einer Funktion und ihrer bleitung, Acta Sci. Math., 10, 64–74 (1941).

В. Ф. Бабенко, Н. П. Корнейчук, В. А. Кофанов, С. А. Пичугов, Неравенства для производных и их приложения, Наук. думка, Киев (2003).

V. Babenko, O. Kovalenko, N. Parfinovych, On approximation of hypersingular integral operators by bounded ones, J. Math. Anal. and Appl., 513, № 2, Article 126215 (2022). DOI: https://doi.org/10.1016/j.jmaa.2022.126215

V. F. Babenko, V. V. Babenko, O. V. Kovalenko, N. V. Parfinovych, On Landau–Kolmogorov type inequalities for charges and their applications, Res. Math., 31, № 1б, 3–16 (2023). DOI: https://doi.org/10.15421/242301

V. F. Babenko, V. V. Babenko, O. V. Kovalenko, N. V. Parfinovych, Nagy type inequalities in metric measure spaces and some applications}; arXiv:2306.11016 (2023). DOI: https://doi.org/10.15330/cmp.15.2.563-575

Yu. M. Berezanski, G. F. Us, Z. G. Sheftel, Functional analysis, Elsevier Sci. (2003).

Published
24.10.2023
How to Cite
BabenkoV., BabenkoV., KovalenkoO., and ParfinovychN. “Some Sharp Landau-Kolmogorov–Nagy-Type Inequalities in Sobolev Spaces of Multivariate Functions”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 75, no. 10, Oct. 2023, pp. 1347 -53, doi:10.3842/umzh.v75i10.7680.
Section
Research articles