Pseudodifferential equations with regular singularity for radial functions of the $p$-adic argument
Abstract
UDC 517.9
We consider the case of regular singularity for a class of equations with pseudodifferential operator $D^{\alpha},$ $\alpha>0,$ on radial functions $$ |t|_p^{\alpha}(D^{\alpha})(|t|_p)=A(|t|_p)u(|t|_p). $$ Under certain conditions, we prove the existence of a solution specified in the form of a locally absolutely convergent power series.
References
S. Albeverio, A. Yu. Khrennikov, V. M. Shelkovich, Theory of $p$-adic distributions. Linear and nonlinear models, Cambridge Univ. Press, Cambridge (2010).
A. V. Antoniouk, A. N. Kochubei, M. V. Serdiuk, Pseudo-differential equations with weak degeneration for radial functions of $p$-adic argument, Math. Anal. and Appl., 523 (2023). https://doi.org/10.1016/j.jmaa.2023.127026. DOI: https://doi.org/10.1016/j.jmaa.2023.127026
I. Ya. Aref'eva, I. V. Volovich, Strings, gravity and $p$-adic space-time, World Sci., Singapore (1988).
B. Dragovich, Lj. Nesic, On p-adic numbers in gravity, Balkan Phys. Lett., 6, 78–81 (1998).
A. Yu. Khrennikov, A. N. Kochubei, $p$-Adic analogue of the Porous medium equation, J. Fourier Anal. and Appl., 24, 1401–1424 (2018); https://doi.org/10.1007/s00041-017-9556-4. DOI: https://doi.org/10.1007/s00041-017-9556-4
A. N. Kochubei, Fractional differential equations: α-entire solutions, regular and irregular singularities, Fract. Calc. and Appl. Anal., 12, № 2, 135–158 (2009); https://zbmath.org/1178.26007.
A. N. Kochubei, Nonlinear pseudo-differential equations for radial real functions on a non-Archimedean field, J. Math. Anal. and Appl., 483 (2020); https://doi.org/10.1016/j.jmaa.2019.123609. DOI: https://doi.org/10.1016/j.jmaa.2019.123609
A. N. Kochubei, Pseudo-differential equations and stochastics over non-Archimedean fields, Marcel Dekker, New York (2001).
A. N. Kochubei, Radial solutions of non-Archimedean pseudo-differential equations, Pacif. J. Math., 269, 355–369 (2014); https://dx.doi.org/10.2140/pjm.2014.269.355. DOI: https://doi.org/10.2140/pjm.2014.269.355
A. M. Robert, A course in p-adic analysis, Grad. Texts in Math., 198, Springer-Verlag, New York (2000).
M. H. Tableson, Fourier analysis on local fields, Princeton Univ. Press, Princeton (1975).
V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, p-Adic analysis and mathematical physics, World Sci., Singapore (1994).
W. A. Zuniga-Galindo, C. He, B.A. Zambrano-Luna, $p$-Adic statistical field theory and convolutional deep Boltzmann machines, Prog. Theor. Phys., 2023, № 6 (2023); https://doi.org/10.1093/ptep/ptad061. DOI: https://doi.org/10.1093/ptep/ptad061
Copyright (c) 2024 Марія Сердюк
This work is licensed under a Creative Commons Attribution 4.0 International License.