Rotational interval exchange transformations

  • A. Teplinsky Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv
Keywords: circle rotation, interval exchange transformation, interval rearrangement ensemble, duality

Abstract

UDC 517.5

We show the equivalence of two possible definitions of a rotational interval exchange transformation: by the first definition, it is the first return map for a circle rotation onto a union of finitely many circle arcs and, by the second definition, it is an interval exchange with a scheme (in the sense of interval rearrangement ensembles) whose dual is also an interval exchange scheme.

References

О. Ю. Теплінський, Перекладальні ансамблі інтервалів, Укр. мат. журн., 75, № 2, 247–268 (2023). DOI: https://doi.org/10.37863/umzh.v75i2.6341

M. Keane, Interval exchange transformations, Math. Z., 141, 25–31 (1975). DOI: https://doi.org/10.1007/BF01236981

W. A. Veech, Interval exchange transformations, J. Anal. Math., 33, 222–272 (1978). DOI: https://doi.org/10.1007/BF02790174

G. Rauzy, Échanges d’intervalles et transformations induites, Acta Arith., 34, 315–328 (1979). DOI: https://doi.org/10.4064/aa-34-4-315-328

M. S. Keane, G. Rauzy, Stricte ergodicité des échanges d’intervalles, Math. Z., 174, 203–212 (1980). DOI: https://doi.org/10.1007/BF01161409

H. Masur, Interval exchange transformations and measured foliations, Ann. Math., 115, 169–200 (1982). DOI: https://doi.org/10.2307/1971341

W. A. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. Math., 115, 201–242 (1982). DOI: https://doi.org/10.2307/1971391

О. Ю. Теплiнський, Гiперболiчна пiдкова для дифеоморфiзмiв кола зi зламом, Нелiнiйнi коливання, 11, № 1, 112–127 (2008).

K. Khanin, A. Teplinsky, Renormalization horseshoe and rigidity for circle diffeomorphisms with breaks, Comm. Math. Phys., 320, 347–377 (2013). DOI: https://doi.org/10.1007/s00220-013-1706-1

K. M. Khanin, E. B. Vul, Circle homeomorphisms with weak discontinuities, Adv. Soviet Math., vol. 3, Dyn. Sstems and Statist. Mech., Amer. Math. Soc., Providence, RI (1991), p. 57–98. DOI: https://doi.org/10.1090/advsov/003/03

K. Cunha, D. Smania, Renormalization for piecewise smooth homeomorphisms on the circle, Ann. Inst. H. Poincaré Anal. Non Lin' eaire, 30, 441–462 (2013). DOI: https://doi.org/10.1016/j.anihpc.2012.09.004

K. Cunha, D. Smania, Rigidity for piecewise smooth homeomorphisms on the circle, Adv. Math., 250, 193–226 (2014). DOI: https://doi.org/10.1016/j.aim.2013.09.017

Published
25.03.2024
How to Cite
Teplinsky, A. “Rotational Interval Exchange Transformations”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 3, Mar. 2024, pp. 447 -67, doi:10.3842/umzh.v76i3.7779.
Section
Research articles