Boundary-value problems for the Lyapunov equation. II

  • O. Boichuk Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv; Kyiv-Mohyla Academy National University
  • Ye. Panasenko Zaporozhye National University
  • O. Pokutnyi Kyiv National University named after Taras Shevchenko; Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv

Abstract

UDC517.923

We investigate the bifurcation conditions of the solutions for the nonlinearly perturbed Lyapunov equation.  Statements of boundary-value problems  are proposed for the coupled systems of Lyapunov equations.

References

О. Бойчук, Є. Панасенко, О. Покутний, Крайові задачі для рівняння Ляпунова, I, Укр. мат. журн., 76, № 3, 353–372 (2024).

А. А. Бойчук, В. Ф. Журавлев, А. М. Самойленко, Обобщенно-обратные операторы и нетеровы краевые задачи, Институт математики НАН Украины, Киев (1995).

S. Dashkovskiy, A. Mironchenko, Input-to-state stability of infinite-dimensional control systems; arXiv.org (1202.3325 [math.OC]): 1–33 (2012); DOI: https://DOI.org/10.48550/arXiv.1202.3325.

S. Dashkovskiy, A. Mironchenko, Input-to-state stability of nonlinear impulsive systems; arXiv.org (1212.5481 [math.DS]), 1–26 (2012); DOI: https://doi.org/10.48550/arXiv.1212.5481.

S. Dashkovskiy, O. Kapustyan, V. Slynko, Well-posedness and robust stability of a nonlinear ODE-PDE system; arXiv.org (2103.15747 [math.AP]), 1–45 (2021); DOI: https://doi.org/10.48550/arXiv.2103.15747.

B. Jacob, A. Mironchenko, Noncoercive Lyapunov functions for input-to-state stability of infinite-dimensional systems; arXiv.org (1911.01327 [math.OC]), 1–27 (2019); DOI: https://doi.org/10.48550/arXiv.1911.01327.

A. M. Kovalev, A. A. Martynyuk, O. A. Boichuk, A. G. Mazko, R. I. Petryshyn, V. Yu. Slyusarchuk, A. L. Zuyev, V. I. Slyn’ko, Novel qualitative methods of nonlinear mechanics and their application to the analysis of multifrequency oscillations, stability, and control problems, Nonlinear Dyn. and Syst. Theory, 9, № 2, 117–145 (2009).

A. Mironchenko, H. Ito, Construction of Lyapunov functions for interconnected parabolic systems: an iISS approach; arXiv.org (1410.3058 [math.DS]), 1–20 (2014); DOI: https://doi.org/10.48550/arXiv.1410.3058.

A. Mironchenko, H. Ito, Integral input-to-state stability of bilinear infinite-dimensional systems, Proc. of the 53th IEEE Conference on Decision and Control, Los Angeles, California, (2014), p. 3115–3160.

A. Mironchenko, C. Prieur, Input-to-state stability of infinite-dimensional systems: recent results and open questions; arXiv.org (1910.01714 [math.OC]), 1–83 (2020); DOI: https://doi.org/10.48550/arXiv.1910.01714.

A. Mironchenko, V. Slynko, Dwell-time stability conditions for infinite dimensional impulsive systems; arXiv.org (2106.11224 [math.DS]), 1–15 (2021); DOI: https://doi.org/10.48550/arXiv.2106.11224.

A. Mironchenko, F. Wirth, Lyapunov characterization of input-to-state stability for semilinear control systems over Banach spaces, Systems and Control Lett., 119, 64–70 (2018).

A. Mironchenko, F. Wirth, Characterizations of input-to-state stability for infinite-dimensional systems; arXiv.org (1701.08952 [math.OC]), 1–16 (2017); DOI: https://doi.org/10.48550/arXiv.1701.08952.

E. D. Sontag, Comments on integral variants of ISS, Systems and Control Lett., 34, № 1-2, 93–100 (1998).

E. D. Sontag, Smooth stabilization implies coprime factorization, IEEE Trans. Automat. Control, 34, № 4, 435–443 (1989).

E. D. Sontag, Y. Wang, On characterizations of the input-to-state stability property, Systems and Control Lett., 24, № 5, 351–359 (1995).

Published
02.06.2024
How to Cite
BoichukO., PanasenkoY., and PokutnyiO. “Boundary-Value Problems for the Lyapunov Equation. II”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 5, June 2024, pp. 680 -94, doi:10.3842/umzh.v76i5.7786.
Section
Research articles