Inequalities for the geometric-mean distance metric
Abstract
UDC 514
We study a hyperbolic-type metric $h_{G,c}$ introduced by Dovgoshey, Hariri, and Vuorinen and determine the best constant $c>0$ for which this function $h_{G,c}$ is a metric in specifically chosen $G$. We also present several sharp inequalities between $h_{G,c}$ and other hyperbolic-type metrics and offer several results obtained for the ball inclusion.
References
A. G. Aksoy, Z. Ibragimov, W. Whiting, Averaging one-point hyperbolic-type metrics, Proc. Amer. Math. Soc., 146, № 12, 5205–5218 (2018). DOI: https://doi.org/10.1090/proc/14173
P. Almagro, M. Boguñá, M. Á. Serrano, Detecting the ultra low dimensionality of real networks, Nat. Commun., 13, 6096 (2022); https://DOI. org/10. 1038/s41467-022-33685-z. DOI: https://doi.org/10.1038/s41467-022-33685-z
M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften, 319, Springer-Verlag, Berlin (1999). DOI: https://doi.org/10.1007/978-3-662-12494-9
E. Candellero, N. Fountoulakis, Clustering and the hyperbolic geometry of complex networks, Internet Math., 12, № 1–2, 2–53 (2016). DOI: https://doi.org/10.1080/15427951.2015.1067848
J. Chen, P. Hariri, R. Klén, M. Vuorinen, Lipschitz conditions, triangular ratio metric, and quasiconformal maps, Ann. Acad. Sci. Fenn. Math., 40, 683–709 (2015). DOI: https://doi.org/10.5186/aasfm.2015.4039
D. Dautova, S. Nasyrov, O. Rainio, M. Vuorinen, Metrics and quasimetrics induced by point pair function, Bull. Braz. Math. Soc., 53, 1377–1401 (2022). DOI: https://doi.org/10.1007/s00574-022-00309-5
J. Doboš, Metric preserving functions, Štroffek, Košice, Slovakia (1998).
O. Dovgoshey, P. Hariri, M. Vuorinen, Comparison theorems for hyperbolic type metrics, Complex Var. Elliptic Equat., 61, № 11, 1464–1480 (2016). DOI: https://doi.org/10.1080/17476933.2016.1182517
T. Friedrich, From graph theory to network science: the natural emergence of hyperbolicity, 6th International Symposium on Theoretical Aspects of Computer Science, STACS 2019, March 13–16, 2019, Berlin, Germany, Wadern, Schloss Dagstuhl–Leibniz Zentrum für Informatik, LIPIcs–Leibniz Int. Proc. Inform., 126, Article 5 (2019).
M. Fujimura, M. Mocanu, M. Vuorinen, A new intrinsic metric and quasiregular maps, Complex Anal. and Synerg., 7, 6 (2021). DOI: https://doi.org/10.1007/s40627-021-00066-z
F. W. Gehring, B. G. Osgood, Uniform domains and the quasi-hyperbolic metric, J. Anal. Math., 36, 50–74 (1979). DOI: https://doi.org/10.1007/BF02798768
P. Hariri, R. Klén, M. Vuorinen, Conformally invariant metrics and quasiconformal mappings, Springer (2020). DOI: https://doi.org/10.1007/978-3-030-32068-3
P. Hariri, M. Vuorinen, X. Zhang, Inequalities and Bilipschitz conditions for triangular ratio metric, Rocky Mountain J. Math., 47, № 4, 1121–1148 (2017). DOI: https://doi.org/10.1216/RMJ-2017-47-4-1121
P. Hästö, A new weighted metric, the relative metric I, J. Math. Anal. and Appl., 274, 38–58 (2002). DOI: https://doi.org/10.1016/S0022-247X(02)00219-6
A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, C. V. Cannistraci, Machine learning meets complex networks via coalescent embedding in the hyperbolic space, Nat. Commun., 8, 1615 (2017); https://doi. org/10. 1038/s41467-017-01825-5. DOI: https://doi.org/10.1038/s41467-017-01825-5
O. Rainio, Inequalities for the generalized point pair function, Lith. Math. J. (2023); https://doi. org/10. 1007/s10986-023-09603-1.
O. Rainio, Intrinsic metrics under conformal and quasiregular mappings, Publ. Math. Debrecen, 101, № 1–2, 189–215 (2022). DOI: https://doi.org/10.5486/PMD.2022.9263
O. Rainio, Intrinsic quasi-metrics, Bull. Malays. Math. Sci. Soc., 44, № 5, 2873–2891 (2021). DOI: https://doi.org/10.1007/s40840-021-01089-9
O. Rainio, M. Vuorinen, Introducing a new intrinsic metric, Results Math., 77, № 2 (2022); DOI: 10. 1007/s00025-021-01592-2. DOI: https://doi.org/10.1007/s00025-021-01592-2
O. Rainio, M. Vuorinen, Triangular ratio metric in the unit disk, Complex Var. Elliptic Equat., 67, № 6, 1299–1325 (2022). DOI: https://doi.org/10.1080/17476933.2020.1870452
O. Rainio, M. Vuorinen, Triangular ratio metric under quasiconformal mappings in sector domains, Comput. Methods Funct. Theory, 23, 269–293 (2023). DOI: https://doi.org/10.1007/s40315-022-00447-3
E. A. Sevost'yanov, On a Poletskii-type inequality for mappings of the Riemannian surfaces, Ukr. Math. J., 72, 816–835 (2020). DOI: https://doi.org/10.1007/s11253-020-01824-8
X. Song, G. Wang, A new metric associated with the domain boundary}; arXiv:2306. 08890.
A. A. Ungar, Analytic hyperbolic geometry and Albert Einstein's special theory of relativity, 2nd ed., World Sci., Singapore (2022). DOI: https://doi.org/10.1142/12478
J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin, New York (1971). DOI: https://doi.org/10.1007/BFb0061216
M. Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Math., 1319, Springer-Verlag, Berlin (1988). DOI: https://doi.org/10.1007/BFb0077904
Y. Wu, G. Wang, G. Jia, X. Zhang, Lipschitz constants for a hyperbolic type metric under Möbius transformations}; arXiv:2309.03515.
D. Zhong, W. Yuan, Hyperbolically Lipschitz continuity, area distortion, and coefficient estimates for $(K, K')$-quasiconformal harmonic mappings of the unit disk, Ukr. Math. J., 73, 171–180 (2021). DOI: https://doi.org/10.1007/s11253-021-01916-z
Copyright (c) 2024 Oona Rainio
This work is licensed under a Creative Commons Attribution 4.0 International License.