Stabilization of a class of $\psi$-Caputo fractional homogeneous polynomial systems

  • Faouzi Omri Department of Mathematics, Faculty of Sciences of Sfax, University of Sfax, Tunisia
Keywords: Stability, stabilization, ψ-Caputo fractional homogenous system, Lyapunov functions

Abstract

UDC 517.9

In a constructive way, we  study the problem of stabilization of $\psi$-Caputo  fractional  homogeneous polynomial systems.  By using the Lyapunov functions, we construct stabilizing feedback laws for the analyzed fractional  system.  A numerical example is given to illustrate the efficiency  of the obtained result.

References

B. K. Lenka, S. N. Bora, Lyapunov stability theorems for $ψ$-Caputo derivative systems, Fract. Calc. and Appl. Anal., 26, 220–236 (2023). DOI: https://doi.org/10.1007/s13540-022-00114-3

T. Kharrat, F. Mabrouk, F. Omri, Stabilization of fractional bilinear systems with multiple inputs, Appl. Math. J. Chinese Univ., 38, 78–88 (2023). DOI: https://doi.org/10.1007/s11766-023-3976-5

A. Anguraj, S. Kanjanadevi, J. J. Nieto, Mild solutions of Riemann–Liouville fractional differential equations with fractional impulses, Nonlinear Anal. Model. Control, 22, 753–764 (2017). DOI: https://doi.org/10.15388/NA.2017.6.2

R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44, 460–481 (2017). DOI: https://doi.org/10.1016/j.cnsns.2016.09.006

A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, Elsevier (2006).

S. Qureshi, Real life application of Caputo fractional derivative for measles epidemiological autonomous dynamical system, Chaos, Solitons and Fractals, 134, Article 109744 (2020). DOI: https://doi.org/10.1016/j.chaos.2020.109744

M. S. Tavazoei, M. Haeri, Chaotic attractors in incommensurate fractional order systems, Phys. D, 237, 2628–2637 (2008). DOI: https://doi.org/10.1016/j.physd.2008.03.037

F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Difference Equat., 142 (2012). DOI: https://doi.org/10.1186/1687-1847-2012-142

M. S. Abdo, S. K. Panchal, A. M. Saeed, Fractional boundary value problem with $ψ$-Caputo fractional derivative, Proc. Indian Acad. Sci. (Math. Sci.), 65 (2019). DOI: https://doi.org/10.1007/s12044-019-0514-8

R. Almeida, A. B. Malinowska, M. T. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Methods Appl. Sci., 41, 336–352 (2018). DOI: https://doi.org/10.1002/mma.4617

B. Samet, H. Aydi, Lyapunov-type inequalities for an antiperiodic fractional boundary value problem involving $ψ$-Caputo fractional derivative, J. Inequal. and Appl., Article 286 (2018). DOI: https://doi.org/10.1186/s13660-018-1850-4

E. S. A. Shahri, A. Alfi, J. A. Tenreiro Machado, An extension of estimation of domain of attraction for

fractional order linear system subject to saturation control, Appl. Math. Lett., 47, 26–34(2015). DOI: https://doi.org/10.1016/j.aml.2015.02.020

E. S. A.Shahri, A. Alfi, J. A. Tenreiro Machado, Robust stability and stabilization of uncertain fractional order systems subject to input saturation, J. Vibration and Control, 24, 3676–3683 (2018). DOI: https://doi.org/10.1177/1077546317708927

G. Wang, K. Pei, Y. Chen, Stability analysis of nonlinear Hadamard fractional differential system, J. Franklin Inst., 356, 6538–6546 (2019). DOI: https://doi.org/10.1016/j.jfranklin.2018.12.033

H. Hermes, Nilpotent and high-order approximations of vector Ield systems, SIAM Rev., 33, 238–264 (1991). DOI: https://doi.org/10.1137/1033050

H. Jerbi, T. Kharrat, Asymptotic stabilizability of homogeneous polynomial systems of odd degree, Systems and Control Lett., 45, 173–178 (2003). DOI: https://doi.org/10.1016/S0167-6911(01)00172-4

H. Jerbi, T. Kharrat, F. Omri, Global stabilization of a class of bilinear systems in $R^3$, Mediterr. J. Math., 13, 2507–2524 (2016). DOI: https://doi.org/10.1007/s00009-015-0636-x

E. Moulay, Stabilization via homogeneous feedback controls, Automatica, 44, 2981–2984 (2008). DOI: https://doi.org/10.1016/j.automatica.2008.05.003

N. Nakamura, H. Nakamura, Y. Yamashita, H. Nishitani, Homogeneous stabilization for input affine homogeneous systems, IEEE Trans. Automat. Control, 54, 2271–2275 (2009). DOI: https://doi.org/10.1109/TAC.2009.2026865

T. Fajraoui, B. Ghanmi, F. Mabrouk, F. Omri, Mittag-Leffler stability analysis of a class of homogeneous fractional systems, Arch. Control Sci., 31, 401–415 (2021).

Published
31.10.2024
How to Cite
OmriF. “Stabilization of a Class of $\psi$-Caputo Fractional Homogeneous Polynomial Systems”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 10, Oct. 2024, pp. 1516 -25, doi:10.3842/umzh.v76i10.7859.
Section
Research articles