On the structure of automorphism groups of some low-dimensional Leibniz algebras

  • L. Kurdachenko Oles Honchar Dnipropetrovsk National University, Dnipro, Ukraine
  • O. Pypka Oles Honchar Dnipropetrovsk National University, Dnipro, Ukraine
  • M. Semko State Tax University, Irpin, Kyiv region
Keywords: Leibniz algebra, automorphism group

Abstract

UDC 512.554

Let $L$ be an algebra over a field $F$ with binary operations $+$ and $[,]$. $L$ is called a left Leibniz algebra if it satisfies the left Leibniz identity: $[[a,b],c]=[a,[b,c]]-[b,[a,c]]$ for all elements $a,b,c\in L$. We study he structure of the  group of automorphisms of $3$-dimensional Leibniz algebras with nilpotency class $2$ and a one-dimensional center.

References

Sh. Ayupov, K. Kudaybergenov, B. Omirov, K. Zhao, Semisimple Leibniz algebras, their derivations and automorphisms, Linear and Multilinear Algebra, 68, № 10, 2005–2019 (2020); DOI:10.1080/03081087.2019.1567674. DOI: https://doi.org/10.1080/03081087.2019.1567674

Sh. Ayupov, B. Omirov, I. Rakhimov, Leibniz algebras: structure and classification, CRC Press, Taylor & Francis Group, (2020). DOI: https://doi.org/10.1201/9780429344336

A. Blokh, On a generalization of the concept of Lie algebra, Dokl. Akad. Nauk SSSR, 165, № 3, 471–473 (1965) (in Russian).

V. V. Kirichenko, L. A. Kurdachenko, A. A. Pypka, I. Ya. Subbotin, Some aspects of Leibniz algebra theory, Algebra and Discrete Math., 24, № 1, 1–33 (2017).

L. A. Kurdachenko, J. Otal, A. A. Pypka, Relationships between the factors of the canonical central series of Leibniz algebras, Eur. J. Math., 2, № 2, 565–577 (2016); DOI:10.1007/s40879-016-0093-5. DOI: https://doi.org/10.1007/s40879-016-0093-5

L. A. Kurdachenko, O. O. Pypka, M. M. Semko, Description of the automorphism groups of some Leibniz algebras, Res. Math., 31, № 1, 52–61 (2023); DOI:10.15421/242305. DOI: https://doi.org/10.15421/242305

L. A. Kurdachenko, O. O. Pypka, I. Ya. Subbotin, On the structure of low-dimensional Leibniz algebras: some revision, Algebra and Discrete Math., 34, № 1, 68–104 (2022); DOI:10.12958/adm2036. DOI: https://doi.org/10.12958/adm2036

L. A. Kurdachenko, A. A. Pypka, I. Ya. Subbotin, On the automorphism groups of some Leibniz algebras, Int. J. Group Theory, 12, № 1, 1–20 (2023); DOI:10.22108/IJGT.2021.130057.1735.

L. A. Kurdachenko, O. O. Pypka, T. V. Velychko, On the automorphism groups for some Leibniz algebras of low dimensions, Ukr. Math. J., 74, № 10, 1526–1546 (2023); DOI:10.1007/s11253-023-02153-2. DOI: https://doi.org/10.1007/s11253-023-02153-2

L. A. Kurdachenko, I. Ya. Subbotin, V. S. Yashchuk, On the endomorphisms and derivations of some Leibniz algebras, J. Algebra and Appl., 2450002 (2022); DOI:10.1142/S0219498824500026. DOI: https://doi.org/10.1142/S0219498824500026

M. Ladra, I. M. Rikhsiboev, R. M. Turdibaev, Automorphisms and derivations of Leibniz algebras, Ukr. Math. J., 68, № 7, 1062–1076 (2016); DOI:10.1007/s11253-016-1277-3. DOI: https://doi.org/10.1007/s11253-016-1277-3

J.-L. Loday, Cyclic homology, Grundlehren Math. Wiss., 301, Springer-Verlag (1992); DOI:10.1007/978-3-662-11389-9. DOI: https://doi.org/10.1007/978-3-662-21739-9

J.-L. Loday, Une version non commutative des algèbres de Lie: les algèbras de Leibniz, Enseign. Math., 39, 269–293 (1993).

J.-L. Loday, T. Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann., 296, № 1, 139–158 (1993); DOI:10.1007/ BF01445099. DOI: https://doi.org/10.1007/BF01445099

F. Szechtman, Structure of the group preserving a bilinear form, Electron. J. Linear Algebra, 13, 197–239 (2005). DOI: https://doi.org/10.13001/1081-3810.1162

F. Szechtman, Structure of the group preserving a bilinear form}; ArXiv: 1306.4285v1 (2013).

Published
03.07.2024
How to Cite
Kurdachenko, L., O. Pypka, and M. Semko. “On the Structure of Automorphism Groups of Some Low-Dimensional Leibniz Algebras ”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 6, July 2024, pp. 864–876, doi:10.3842/umzh.v76i5.7868.
Section
Research articles