On the behavior of one class of mappings acting upon domains with locally quasiconformal boundary
Abstract
UDC 517.5
We study the mappings satisfying the so-called inverse Poletsky inequality. We consider mappings of the domains with quasiextreme distance, domains with locally quasiconformal boundary, and domains regular (in a sense of prime ends) onto the domains with locally quasiconformal boundary, regular domains, or domains that are locally Hölder equivalent to a half ball on their boundary. For these mappings, we prove their Hölder logarithmic continuity in a neighborhood of points of the boundary.
References
E. A. Sevost'yanov, On logarithmic Hölder continuity of mappings on the boundary, Ann. Fenn. Math., 47, 251–259 (2022). DOI: https://doi.org/10.54330/afm.113348
E. A. Sevost'yanov, S. O. Skvortsov, O. P. Dovhopiatyi, On nonhomeomorphic mappings with the inverse Poletsky inequality, J. Math. Sci., 252, № 4, 541–557 (2021).
O. Martio, S. Rickman, J. Väisälä, Distortion and singularities of quasiregular mappings, Ann. Acad. Sci. Fenn. Math., 465, 1–13 (1970). DOI: https://doi.org/10.5186/aasfm.1969.448
S. Rickman, Quasiregular mappings, Springer-Verlag, Berlin (1993). DOI: https://doi.org/10.1007/978-3-642-78201-5
O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in modern mapping theory, Springer Sci.-Business Media, LLC, New York (2009).
M. Vuorinen, Exceptional sets and boundary behavior of quasiregular mappings in $n$-space, Ann. Acad. Sci. Fenn. Math. Diss., 11, 1–44 (1976).
M. Vuorinen, On the existence of angular limits of $n$-dimensional quasiconformal mappings, Ark. Math., 18, 157–180 (1980). DOI: https://doi.org/10.1007/BF02384688
J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin etc. (1971). DOI: https://doi.org/10.1007/BFb0061216
R. Näkki, Prime ends and quasiconformal mappings, J. Anal. Math., 35, 13–40 (1979). DOI: https://doi.org/10.1007/BF02791061
Д. А. Ковтонюк, В. И. Рязанов, К теории простых концов для пространственных областей, Укр. мат. журн., 67, № 4, 467–479 (2015).
O. Dovhopiatyi, On the possibility of joining two pairs of points in convex domains using paths, Праці Інституту прикладної математики і механіки НАН України, 47, № 1, 3–12 (2023). DOI: https://doi.org/10.37069/10.37069/1683-4720-2023-37-1
E. A. Sevost'yanov, S. A. Skvortsov, On the convergence of mappings in metric spaces with direct and inverse modulus conditions, Ukr. Math. J., 70, № 7, 1097–1114 (2018).
M. Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Math., 1319, Springer-Verlag, Berlin etc. (1988). DOI: https://doi.org/10.1007/BFb0077904
N. S. Ilkevych, E. A. Sevost'yanov, S. A. Skvortsov, On the global behavior of inverse mappings in terms of prime ends, Ann. Fenn. Math., 46, 371–388 (2021). DOI: https://doi.org/10.5186/aasfm.2021.4630
K. Kuratowski, Topology, vol. 2, Academic Press, New York, London (1968).
O. Martio, J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Math., 4, 384–401 (1978/1979). DOI: https://doi.org/10.5186/aasfm.1978-79.0413
F. W. Gehring, O. Martio, Quasiextremal distance domains and extension of quasiconformal mappings, J. Anal. Math., 45, 181–206 (1985). DOI: https://doi.org/10.1007/BF02792549
Copyright (c) 2024 Євген Олександрович Севостьянов, Олександр Довгопятий, Наталія Ількевич, Марія Андрощук
This work is licensed under a Creative Commons Attribution 4.0 International License.